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Abstract 

This study evaluates the reliability and suitability of long-term water quality data 

collected from a sustainable aquaponics system equipped with a pH, dissolved 

oxygen, and temperature regulation control strategy based on a PID algorithm. 

Although PID control was implemented to maintain parameters within optimal 

biological ranges, natural fluctuations and out-of-range measurements were 

recorded, particularly in pH. Rather than being considered anomalies, these 

deviations represent realistic environmental variations that must be captured for 

comprehensive system analysis. A thorough data validation process was conducted, 

including descriptive statistics, outlier detection, correlation analysis, principal 

component analysis (PCA), and temporal stability evaluation. Results confirmed 

the absence of missing data, the presence of controlled variability in dissolved 

oxygen and temperature, and meaningful correlations between parameters, with pH 

showing the highest variability. Autocorrelation and long-term trend analyses 

indicated stable measurement patterns that reflect real-world aquaponic dynamics. 

The validated dataset provides a robust foundation for future studies, particularly 

for the development of artificial intelligence (AI)-based predictive models aimed 

at early detection of fish distress or mortality. 

© The Author 2025. 

Published by ARDA. 

Keywords: Aquaponics, PID control, Water quality monitoring, Data validation, 

Sustainable aquaculture 

1. Introduction  

Aquaponics, which integrates aquaculture and hydroponics into a recirculating system, is increasingly 

recognized as a sustainable food production approach that maximizes resource efficiency and reduces 

environmental impact [1], [2], [3]. In these systems, fish waste provides nutrients for plants, while roots purify 

the water, reducing fertilizer inputs and water use. To sustain fish health, plant growth, and microbial 

biofiltration, precise regulation of water quality parameters such as pH, temperature, and dissolved oxygen (DO) 

is essential [4], [5], [6]. Moreover, fish welfare in aquaponic systems is closely related to water quality, 

particularly in connection with feed and waste management [5]. 

https://creativecommons.org/licenses/by/4.0/
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Automatic control strategies have been introduced to stabilize these parameters. Proportional–Integral–

Derivative (PID) controllers, in particular, are widely applied due to their robustness and simplicity. Supriadi et 

al. (2019) demonstrated Arduino-based proportional control of pH and temperature in aquaponics [7], while 

more advanced Smart Aquaponics implementations combined automatic PID tuner tools with manual fine-

tuning of Kₚ, Kᵢ, and K𝑑 gains across interconnected units [8]. However, system nonlinearities and 

environmental variability still generate deviations from setpoints, even under PID regulation [9], underscoring 

the need to analyze system performance under both controlled and uncontrolled conditions. Beyond PID, other 

strategies have been explored to improve resilience. Fuzzy logic-based controllers have been successfully 

applied to regulate pH and temperature in aquaponics biofilters [10], while IoT-based monitoring and machine 

learning frameworks have been integrated for predictive control and real-time decision support [11], [12]. 

Despite these advancements, one critical aspect remains insufficiently addressed: whether collected data are 

reliable, representative, and sufficiently variable for advanced modeling. Data validation is crucial for long-

term monitoring, where sensor drift, noise, or missing records can compromise analytical outcomes [13]. In 

aquaponics, datasets capturing both stable ranges and outliers caused by stress or control limitations are 

indispensable for predictive tools capable of early error detection and decision support [14], [15]. 

While prior works have primarily emphasized controller performance or short-term monitoring [7], [10], [11], 

few studies have validated extended time-series datasets that reflect the real variability and limitations of PID 

regulation under operational conditions. Addressing this gap, the present study introduces an eight-month 

dataset from a domestic aquaponics system regulated with PID control. Comprehensive validation was 

conducted—including descriptive statistics, outlier analysis, correlation, and principal component analysis 

(PCA), and temporal stability tests—to assess data quality and relevance. The results confirm strong internal 

consistency, realistic variability, and meaningful parameter relationships. By establishing a validated dataset 

that captures authentic deviations, this work provides a robust foundation for future development of AI-based 

predictive control systems aimed at enhancing stability and sustainability in aquaponic operations [12], [15]. 

2. Materials and methods  

2.1. System description 

The experimental aquaponic system operated in a closed-loop recirculation configuration, integrating the 

rearing of red tilapia (Oreochromis niloticus) with the cultivation of crisp lettuce (Lactuca sativa var. crispa). 

The main rearing tank (1) had a volume of 800 L (1 m² surface area) and was stocked with 30 juvenile tilapia, 

corresponding to a density consistent with small-scale aquaponic trials. The tank was instrumented with 

submerged sensors for dissolved oxygen (Model AR8406), water temperature (DS18B20 submersible 

thermocouple), and pH (Arduino-compatible PH45 probe). Two internal aerators were installed to maintain 

dissolved oxygen within the optimal range for both fish and plants. Water was circulated through a PVC outlet 

connected to a submersible JUIYU pump (800 L/h, 12 V DC, 5 m head) located at the tank bottom. The pump 

was initially fitted with narrow slits to prevent the escape of fingerlings, later widened as the fish grew to allow 

the passage of suspended solids. 

The first filtration stage consisted of a cylindrical clarifier (2) for gravitational sedimentation of coarse 

particulate matter, including uneaten feed and feces. The second stage was a mechanical filtration unit (3) with 

a fine-mesh screen to capture finer suspended particles. The third stage was a biofilter (4), packed with synthetic 

polyester fiber and thoroughly cleaned plastic bottle caps. These materials were selected for their high surface 

area and structural heterogeneity, favoring colonization by nitrifying bacteria responsible for oxidizing 

ammonia into nitrite and subsequently into nitrate, thereby supplying plants with assimilable nitrogen.The 

nutrient-enriched effluent entered a floating raft hydroponic bed (5), where approximately 25–30 lettuce plants 

were cultivated in net pots inserted into perforations in a polystyrene sheet. Plant roots were in direct contact 

with the circulating water, enabling nutrient uptake and further water polishing. After this stage, the treated 

water returned by gravity to the fish tank (1), completing the recirculation loop. 



 SEI Vol. 7, No. 2, 2025, pp.521-536 

 

523 

Throughout the system, a Raspberry Pi 4 served as the supervisory control unit, acquiring sensor inputs and 

managing actuators in real time. It activated the aerators when dissolved oxygen dropped, a cold-water injection 

pump when temperature exceeded the target range, an aquarium glass heater during temperature drops, and a 

peristaltic pump for dosing apple vinegar or sodium bicarbonate in response to pH deviations. A schematic of 

the system is presented in Figure 1. 

 

Figure 1. Tilapia tank (1), mechanical filter (2), biofilter (3), hydroponic beds (4), and water pump (5) in the 

aquaponic system 

2.2. Control strategy 

The unit operated off-grid using a photovoltaic array rated at 400 Wp, which charged a 12 V, 120 Ah LiFePO₄ 

battery through a 40 A MPPT controller. During daytime operation, the PV array directly supplied power to the 

DC instrumentation and actuators while simultaneously charging the battery. When irradiance was insufficient 

(nighttime or cloudy conditions), the battery bank provided an uninterrupted supply to all loads. This automatic 

exchange between photovoltaic generation and stored energy ensured backup capacity and continuity of supply, 

thereby guaranteeing stability in actuator responses and uninterrupted acquisition of sensor data. The energy 

configuration allowed the system to operate autonomously for approximately 48 hours without solar input, 

securing data continuity even under adverse weather conditions. 

A Raspberry Pi 4 functioned as the supervisory controller and data hub, acquiring real-time signals from the 

dissolved oxygen (AR8406), temperature (DS18B20), and pH (PH45) sensors. Based on these measurements, 

a Proportional–Integral–Derivative (PID) algorithm computed corrective actions relative to predefined setpoints 

(pH = 7.0, DO = 6 mg/L, temperature = 25 °C) and their allowable biological ranges. 

Temperature regulation was bidirectional; when water temperature exceeded the upper threshold, a 12 V 

submersible pump injected cold water from a sealed auxiliary reservoir; conversely, when temperature dropped 

below the lower bound, a 300 W thermostat-controlled heater was activated to restore the setpoint. pH stability 

was maintained via a dual-channel peristaltic pump, which dosed apple vinegar or diluted sodium bicarbonate 

according to the PID output. Dissolved oxygen was controlled through two 12 V DC aerators (15 W, 800 L/h 

each), automatically engaged when levels approached the minimum threshold for tilapia welfare. In parallel 

with these conditional actions, a solids-lift submersible pump operated continuously to sustain water 

recirculation and solids removal. All measurements, actuator states, and PID outputs were locally logged and 

synchronized to a Firebase Realtime Database when internet connectivity was available, ensuring continuous 

monitoring and full traceability of system performance. A schematic of the control architecture is presented in 

Figure 2. 
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Figure 2. Solar-powered control architecture. Raspberry Pi 4 reads dissolved oxygen, temperature, and pH and 

drives actuators: continuous solids-lift submersible pump; cold-water injection pump; two 12 V, 15 W 

aerators; dual-channel peristaltic dosing; and a 300 W thermostat heater. Power is supplied by a 400 Wp PV 

array, 12 V 120 Ah LiFePO₄ battery, and 40 A MPPT controller; an inverter is used only when the AC heater 

is operated from the battery 

2.3. Experimental design and procedure 

The aquaponic system was configured as a closed-loop arrangement integrating the rearing tank, biofiltration 

units, and the hydroponic grow bed. Tilapia (Oreochromis niloticus) were selected as the experimental species 

due to their robustness and adaptability to recirculating aquaculture systems. The rearing tank (800 L, 1 m² 

surface area) was stocked with 30 juvenile tilapia, while approximately 25–30 lettuce plants (Lactuca sativa 

var. crispa) were cultivated in the floating raft bed. This configuration provided a balanced nutrient exchange 

between aquaculture and hydroponics, maintaining water quality parameters within biologically acceptable 

thresholds. 

Water quality monitoring was conducted continuously using the sensors integrated into the Raspberry Pi 4, 

which recorded pH, temperature, and dissolved oxygen at predefined intervals. These measurements were 

automatically logged and served as inputs for the PID-based control system. The closed-loop feedback ensured 

that deviations from setpoints were immediately corrected through actuation. 

Thresholds for favorable operation were established based on literature values for tilapia welfare and lettuce 

growth. Water temperature was maintained within 24–28°C, with corrective actions triggered when it exceeded 

28°C (activation of the auxiliary cold-water pump) or dropped below 24°C (engagement of the 300 W 

thermostat-controlled heater) [5], [10]. The acceptable pH range was 6.5–7.5, with the setpoint fixed at 7.0, 

consistent with both tilapia tolerance and nutrient availability for plants [5], [10]. Dissolved oxygen (DO) was 

kept above 5 mg/L, with aerators activated automatically when DO approached this threshold, thereby ensuring 

adequate oxygenation for tilapia welfare [5], [15]. 

Sensor calibration was performed weekly in accordance with manufacturer guidelines and widely adopted 

protocols. The pH probe (PH45) was adjusted using the manufacturer’s potentiometric procedure (2.5 V in pH 

7 buffer) and calibrated with standard buffer solutions at pH 4.0 and 7.0. The dissolved oxygen sensor 

(AR8406), factory-calibrated and certified, was periodically verified in air-saturated water, checked with 

sodium sulfite solution for zero reference, and occasionally cross-validated using a YSI meter. The temperature 

sensor (DS18B20) was verified against a laboratory-grade glass thermometer at the start of the experiment and 
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during periodic maintenance. According to manufacturer specifications, accuracies were ±0.1–0.2 pH units, 

±0.5 °C for temperature, and ±0.3 mg/L for dissolved oxygen, ensuring reliable and traceable measurements 

throughout the study. 

The experimental phase lasted eight months and encompassed multiple production cycles. Data collected during 

this period were later used for system validation and for the development of predictive artificial intelligence 

models. In this way, the aquaponic installation functioned not only as a life-support system for fish and plants 

but also as a reliable experimental platform for acquiring validated datasets. 

2.4. Data analysis and processing 

The collected data underwent a comprehensive preprocessing phase to ensure quality and consistency. 

Measurements outside the biologically relevant ranges—pH between 5 and 9, dissolved oxygen (DO) between 

0 and 15 mg/L, and temperature between 18 and 35 °C—were identified as anomalies. Specifically, 92 pH 

readings fell outside the optimal range and were treated as outliers for descriptive and trend analyses, following 

standard procedures for aquaponics data validation [15], [16]. 

Descriptive statistics were computed for each variable, including mean (𝑋̅), standard deviation (𝜎), median, and 

interquartile range (IQR), according to the following expressions: 

                                       𝑥̅ =
1

𝑁
∑ 𝑥𝑖,      𝜎 = √

1

𝑁 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑁

𝑖=1

𝑁

𝑖=1

                                          (1) 

                                             𝑀𝑒𝑑𝑖𝑎𝑛 = 𝑥𝑁+1
2

,               
𝐼𝑄𝑅 = 𝑄3 − 𝑄1                                             (2) 

Where 𝑥𝑖 represents the i-th measurement and N the total number of measurements. These statistics provided a 

summary of central tendency and variability within the system [15]. 

Long-term trends were evaluated using moving averages and moving standard deviations over a 30-

measurement window [16], which enabled visualization of temporal variability and detection of deviations from 

the target ranges. Additionally, time series were decomposed into trend, seasonal, and residual components 

using an additive model [17]: 

                                                                      𝑥𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡                                                                           (3)  

Where 𝑇𝑡 represents the trend, 𝑆𝑡 the seasonal variation, and 𝑅𝑡  the residual (noise) at time t. This decomposition 

facilitated the identification of periodic fluctuations caused by environmental or operational cycles [17]. 

Autocorrelation analysis was performed to detect temporal dependencies, computing the autocorrelation 

function (ACF) for lags up to 50 measurements: 

                                                                        𝜌𝑘 =
∑ (𝑥𝑡−𝑥̅)(𝑥𝑡+𝑘−𝑥̅)𝑁−𝑘

𝑡=1

∑ (𝑥𝑡−𝑥̅)2𝑁
𝑡=1

                                                  (4) 

Where 𝜌𝑘 is the autocorrelation at lag k. This provided information on the system's memory and the 

effectiveness of PID control loops [15], [18]. 

Finally, the data were visualized using line graphs, histograms, and bands of moving average ± standard 

deviation. Optimal operating ranges were shaded for clarity (e.g., pH 5–9, DO 4–8 mg/L, temperature 22–

27 °C), and median lines with 95% confidence intervals were included to highlight stability and variability over 

time [16], [17]. These analyses provided a comprehensive characterization of system performance, supporting 

subsequent validation and predictive modeling of water quality parameters [15], [18]. 
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2.5. System validation 

The validation of the aquaponic system was performed by comparing measured pH, dissolved oxygen (DO), 

and temperature values with the predefined setpoints of the PID control system. Key performance indicators, 

including the mean absolute error (MAE) and root mean squared error (RMSE), were computed to quantify 

control accuracy: 

                                       𝑀𝐴𝐸 =
1

𝑁
∑|𝑥𝑖 − 𝑥𝑠𝑒𝑡|,        𝑅𝑀𝑆𝐸 = √

1

𝑁
∑(𝑥𝑖 − 𝑥𝑠𝑒𝑡)2 

𝑁

𝑖=1

                     (5)

𝑁

𝑖=1

 

Where 𝑥𝑖 is the measured value at time i, 𝑥𝑠𝑒𝑡  is the setpoint, and N is the number of measurements. These 

metrics quantified deviations from target values and allowed evaluation of system precision. 

The computed errors demonstrated effective control performance across all monitored parameters. For pH, the 

MAE was 0.599 and the RMSE 0.846, indicating that deviations from the setpoint remained minimal. Dissolved 

oxygen exhibited an MAE of 0.758 and an RMSE of 0.927, while water temperature showed an MAE of 0.800 

and an RMSE of 1.042. These results confirm that the PID controller maintained stable operational conditions 

within the ranges suitable for both tilapia welfare and lettuce cultivation. 

Previous research has demonstrated the effectiveness of automated water quality control in aquaponics. Fuzzy 

logic-based controllers have been successfully applied to regulate pH and temperature, minimizing oscillations 

and improving overall system stability [19]. Similarly, modular IoT-based monitoring systems with edge 

computing have been shown to maintain optimal conditions for both fish and plants through real-time data 

acquisition and adaptive control [20]. 

The long-term stability of the present system was further evaluated through autocorrelation and trend 

decomposition analyses. Positive short-lag autocorrelation indicated smooth parameter adjustments, while the 

decomposition revealed minimal seasonal or environmental influence on overall dynamics [21]. Together, these 

results confirm that the PID controller sustained a stable operational environment suitable for both tilapia rearing 

and lettuce cultivation. 

2.6. Data acquisition and logging 

Data acquisition was conducted using a modular IoT system that integrated sensors for pH, dissolved oxygen, 

and temperature. The system used edge computing to process data locally, minimizing latency and enabling 

real-time control decisions. Data were recorded at regular intervals, generating time-series datasets suitable for 

system performance analysis and AI-based predictive modeling. 

Data integrity was ensured through cloud synchronization and local redundancy, allowing remote monitoring 

and post-processing analysis. Prior studies have confirmed that IoT-enabled aquaponic monitoring improves 

both operational efficiency and data reliability, particularly when combined with adaptive algorithms for real-

time control [22]. Additionally, sensor validation techniques are crucial for maintaining accurate long-term 

measurements in aquaponics [23]. 

3. Results  

3.1. Descriptive statistics and data validation 

A preliminary analysis of the dataset was conducted to evaluate its completeness, central tendencies, variability, 

and compliance with recommended biological ranges for aquaponic systems. The dataset comprises 1,823 

observations of three key water quality parameters: pH, dissolved oxygen (DO), and temperature. No missing 

values were detected across the dataset, ensuring consistency for further statistical and machine learning 

applications. 
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The descriptive statistics are summarized in Table 1. The mean pH was 6.60 with a standard deviation of 0.75, 

while DO averaged 5.57 mg/L with moderate variability (standard deviation = 0.82). Temperature showed the 

lowest variability, with a mean of 24.70 °C and a standard deviation of 0.99, remaining tightly clustered around 

the optimal range for aquaponic operation. Out-of-range values were primarily detected in pH measurements 

(92 instances), whereas DO and temperature measurements remained fully within the recommended ranges. 

Table 1. Summary statistics of water quality parameters 

Parameter Count Mean Std Min 25% 50% 75% Max 

pH 1823 6.60 0.75 4.50 6.20 6.72 7.10 8.90 

Dissolved Oxygen (mg/L) 1823 5.57 0.82 3.10 4.93 5.60 6.30 6.97 

Temperature (°C) 1823 24.70 0.99 22.00 24.19 24.75 24.94 27.19 

To visually assess variability and the presence of outliers, Figure 3 presents boxplots for each parameter. Median 

values are highlighted in red, means are shown as black markers, and 95% confidence intervals are represented 

as error bars. Shaded areas correspond to the biologically recommended operating ranges for aquaponic systems 

(pH 5–9, DO 0–15 mg/L, and temperature 18–35 °C). The visualization reveals that while DO and temperature 

remained within acceptable bounds, pH measurements exhibited occasional deviations below the lower 

threshold, reflecting natural fluctuations in the system. 

 
Figure 3. Boxplot of water quality parameters with recommended ranges, mean values, and 95% confidence 

intervals 

3.2. Correlation analysis 

To examine the interdependence among water quality parameters, a Pearson correlation analysis was conducted. 

The correlation matrix is presented in Figure 4, where colors indicate the strength and direction of pairwise 

associations. The results revealed a moderate positive correlation between pH and dissolved oxygen (r = 0.55), 

a moderate positive correlation between dissolved oxygen and temperature (r = 0.67), and a weak positive 

correlation between pH and temperature (r = 0.20). All correlations were statistically significant (p < 0.001). 

 
Figure 4. Pearson correlation matrix of water quality parameters (pH, dissolved oxygen, and temperature) 
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To statistically validate these findings, p-values were computed for each pairwise correlation. As shown in Table 

2, all relationships were highly significant (p < 0.001), confirming that the observed patterns are unlikely to be 

attributed to random variability in the dataset. 

Table 2. P-values of pairwise correlations among water quality parameters 

 pH Dissolved Oxygen Temperature 

pH 1.000000e+00 2.180403e-143 4.061121e-18 

Dissolved Oxygen 2.180403e-143 1.000000e+00 1.731474e-240 

Temperature 4.061121e-18 1.731474e-240 1.000000e+00 

To further illustrate these associations, Figure 5 depicts the scatterplot and regression line between pH and 

dissolved oxygen. While the regression line suggests a moderate positive correlation (r = 0.55), the wide 

dispersion confirms that the relationship is not strictly linear. A positive association was expected because 

photosynthetic activity typically increases both pH and DO, whereas respiration decreases them simultaneously. 

However, in this system, the expected trend was attenuated by regulatory interventions such as pH dosing and 

aeration, as well as by natural fluctuations in fish metabolism and microbial processes. These combined factors 

explain why the relationship appears weaker and more scattered than theoretically anticipated. 

 
Figure 5. Scatter plot of pH versus dissolved oxygen with linear regression fit, illustrating the positive 

association between the two parameters 

3.3. Principal component analysis (PCA) 

To explore patterns and relationships among water quality parameters, a Principal Component Analysis (PCA) 

was conducted. Before analysis, variables (pH, dissolved oxygen, and temperature) were standardized using z-

score normalization (mean = 0, standard deviation = 1) through the StandardScaler function in scikit-learn. This 

step ensured comparability across variables with different units and scales. The first two principal components 

captured most of the variance, with PC1 accounting for 65.8% and PC2 for 26.8% of the total variability (Figure 

6). 

PC1 showed negative loadings for temperature (–0.67), pH (–0.56), and dissolved oxygen (–0.49). PC2 was 

mainly influenced by dissolved oxygen (+0.78) and pH (–0.62), while temperature contributed minimally (–

0.05). The scatterplot (Figure 6), colored by fish condition, revealed three distinct clusters corresponding to the 

dataset labels. Condition 1 formed a cluster on the left side of the plot, Condition 2 clustered in the upper-right 

region, and Condition 3 clustered in the lower-right region. Overall, PC1 separated the samples according to 

combined water quality gradients, while PC2 primarily differentiated observations based on variation in 

dissolved oxygen and pH. 
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Figure 6. PCA scatterplot of water quality parameters. Points are colored according to fish condition. The axes 

indicate the proportion of variance explained by each principal component 

3.4. Temporal stability of water quality parameters 

The long-term evolution of water quality parameters in the aquaponic system was evaluated through time series 

of pH, dissolved oxygen (DO), and temperature. Statistical indicators (Table 3) confirmed that all three variables 

exhibited significant decreasing trends according to the Mann–Kendall test (p < 0.001). The linear trend analysis 

showed negative slopes for pH (–0.00045 units per measurement, R² = 0.10), DO (–0.00089 mg/L per 

measurement, R² = 0.33), and temperature (–0.00088 °C per measurement, R² = 0.21), although the magnitude 

of decline was more pronounced for DO. Variability was highest for dissolved oxygen (CV = 14.7%), followed 

by pH (CV = 11.3%), while temperature was the most stable parameter (CV = 4.0%), consistently close to the 

mean operational value of 24.7 °C. 

Table 3. Statistical summary and trend analysis of water quality parameters 

Variable Mean 
CV 

(%) 

Linear trend 

slope 
R² 

ADF p-

value 
MK trend 

MK p-

value 

pH 6.60 11.30 –0.00045 0.10 0.088 Decreasing <0.001 

Dissolved 

oxygen 
5.57 14.74 –0.00089 0.33 0.069 Decreasing <0.001 

Temperature (°C) 24.70 4.04 –0.00088 0.21 0.308 Decreasing <0.001 

To visualize these dynamics, Figure 7 illustrates the trajectories of each parameter across the measurement 

period. The pH series (top panel, blue) shows an initial range of 7.6–7.8, followed by a sharp decline to 

approximately 6.0 at the fourth measurement. A partial recovery is observed thereafter, but the series ends with 

a further drop to about 5.6. Dissolved oxygen (middle panel, green) remained relatively stable between 5.5 and 

6.0 mg/L until the fifth measurement, after which it exhibited a marked decline, reaching ~3.5 mg/L at the final 

observation. By contrast, temperature (bottom panel, red) remained within a narrow range around the mean, 

confirming its stability relative to the other parameters. 
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Figure 7. Long-term time series of water quality parameters. Panels show pH (top), dissolved oxygen 

(middle), and temperature (bottom) over the measurement period, highlighting temporal trends and critical 

decreases in pH and oxygen 

3.5. Autocorrelation and rolling variability 

To further investigate temporal dependencies in water quality parameters, autocorrelation functions (ACF) were 

computed alongside rolling mean and standard deviation bands for pH, dissolved oxygen (DO), and temperature 

(Figure 8). The pH series exhibits an initial autocorrelation near 1 that gradually decreases but remains positive 

and significant up to lag ~40–50, indicating long-term memory: if the water has a certain pH today, it is highly 

likely to maintain similar values in subsequent measurements. Dissolved oxygen shows a similar pattern, 

remaining significant until approximately lag 35–40, reflecting the continuity of oxygen dynamics influenced 

by environmental conditions and sustained biological consumption. Temperature displays a nearly identical 

pattern to pH, with high persistence and a slow decay of autocorrelation, consistent with gradual environmental 

changes. The rolling mean and standard deviation bands within the same figure highlight periods of higher 

variability. While temperature remains stable, pH and DO show intermittent fluctuations, corroborating the 

trends observed in the time series. 

Overall, all three water quality parameters demonstrate strong positive autocorrelation at short and medium lags, 

confirming that their evolution is strongly influenced by prior values. In practical terms, the physicochemical 

processes governing pH, DO, and temperature exhibit temporal inertia, changing gradually rather than abruptly 

between consecutive measurements. 

 
Figure 8. Combined visualization of autocorrelation functions (ACF) and rolling mean ±1 standard deviation 

bands for pH (top), dissolved oxygen (middle), and temperature (bottom), illustrating both temporal 

dependence and variability patterns 
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3.6. Trend analysis with rolling mean and variability 

A long-term trend analysis with variability was conducted for pH, dissolved oxygen (DO), and temperature 

using a 30-point rolling mean and ±1 standard deviation bands (Figure 9). The pH series (top panel, blue) 

exhibits a general downward trend, decreasing from values around 7.5–8.0 to approximately 6.0–6.2 in the final 

measurements. The variability, indicated by the shaded band, remains relatively stable for most of the period 

but shows increased dispersion towards the end. This pattern indicates a progressive acidification of the water, 

with occasional episodes of short-term fluctuation. 

Dissolved oxygen (middle panel, green) begins near 6.2–6.5 mg/L and shows a slight peak around the third to 

fourth measurement (~6.7 mg/L). Subsequently, a marked decline occurs, reaching approximately 3.5–4.0 mg/L 

in the last observations. The expansion of the variability band in the final points reflects greater instability in 

oxygen levels, indicating a sustained loss of dissolved oxygen over time. 

Temperature (bottom panel, red) starts around 25 °C, rises to ~27 °C at the fourth measurement, and then 

gradually decreases to near 23 °C by the end. Variability is more pronounced at intermediate points, reflecting 

temporary thermal oscillations. Overall, temperature displays a slight downward trend with minor fluctuations 

throughout the period. 

This combined analysis of rolling mean and variability confirms the temporal patterns observed in the raw time 

series, highlighting progressive acidification, decreasing oxygen availability, and moderate temperature 

fluctuations, which are critical for maintaining optimal aquaponic system performance. Among these 

parameters, dissolved oxygen and pH emerged as the most limiting factors, suggesting that oxygen depletion 

and progressive acidification were the main stressors contributing to reduced fish survival during the study. 

 

Figure 9. Long-term trends of water quality parameters with 30-point rolling mean and ±1 standard deviation 

bands for pH (top), dissolved oxygen (middle), and temperature (bottom) 

An advanced analysis of water quality parameters was conducted using seasonal-trend decomposition with the 

seasonal_decompose method (Figure 10) to separate long-term trends from potential cyclical patterns. The 

decomposition confirmed that the previously observed trends—progressive acidification of pH, declining 
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dissolved oxygen, and moderate cooling of temperature—were consistent across the series, while the seasonal 

components remained negligible for all parameters, indicating no marked cyclic behavior. These results 

reinforce that the deterioration of water quality in the aquaponic system followed a continuous, non-cyclic trend, 

in agreement with the rolling mean and variability analysis (Figure 9). 

 

Figure 10. Seasonal-trend decomposition of pH (top), dissolved oxygen (middle), and temperature (bottom), 

illustrating the long-term downward trends and negligible seasonal components 

3.7. Distribution of water quality parameters 

The distribution of water quality parameters was analyzed using histograms overlaid with kernel density 

estimates (KDE) for pH, dissolved oxygen (DO), and temperature (Figure 11). The pH distribution (top panel, 

blue) is unimodal with a slight left skew. Most measurements occur between 6.8 and 7.2, corresponding to near-

neutral water, while lower values between 5 and 6 appear less frequently, indicating occasional episodes of 

acidification. Overall, the majority of samples maintain a near-neutral pH, with rare deviations toward acidic 

conditions. Dissolved oxygen (middle panel, green) exhibits a bimodal distribution, with two main peaks around 

5 mg/L and 6.2–6.5 mg/L. This pattern suggests the presence of two different conditions, potentially reflecting 

temporal variations, spatial heterogeneity, or temperature-related effects on oxygen solubility. Temperature 

(bottom panel, red) shows a multimodal distribution with peaks near 24, 25, and 26 °C, with the highest 

frequency around 25 °C. The tails of the distribution indicate occasional lower (~22–23 °C) and higher (~27 °C) 
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temperatures, likely associated with environmental or operational variability. Taken together, these distributions 

indicate that pH remains mostly neutral with occasional acidification events, dissolved oxygen reflects two 

distinct water quality scenarios, and temperature exhibits broader variability, which could influence both pH 

and oxygen dynamics. 

 

Figure 11. Histograms with KDE for pH (top), dissolved oxygen (middle), and temperature (bottom), 

illustrating the distribution patterns of water quality parameters in the aquaponic system 

4. Conclusion and discussion 

Unlike prior studies that mainly focused on parameter regulation through PID or fuzzy control [7], [12], the 

main contribution of this work lies in validating a long-term, biologically consistent dataset under PID 

regulation. This dataset captures both stable operating conditions and critical deviations, which are often 

overlooked but are essential for developing predictive tools. By ensuring completeness, consistency, and 

realistic variability, the dataset offers a reliable foundation for future AI-based models aimed at improving 

aquaponic management [13], [15]. 

The results demonstrate that, although the PID controller maintained average values within acceptable ranges 

for the species under study—typically a pH of 6.5–8.5 and dissolved oxygen (DO) above 5 mg/L— it failed to 

prevent critical excursions in both pH and DO. Among the three parameters, pH exhibited the highest proportion 

of out-of-range values, confirming its critical role in overall stability. Time series and rolling statistics revealed 

progressive acidification and sustained oxygen depletion, while autocorrelation confirmed that these deviations 

persisted across consecutive measurements, increasing biological stress. Seasonal-trend decomposition further 

indicated that these changes were progressive rather than cyclical, reflecting a genuine deterioration of water 

quality. 
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Correlation analyses provided additional insights into system dynamics. The strong negative relationship 

between temperature and DO is consistent with oxygen solubility laws, while the positive association between 

pH and DO reflects coupled biological and chemical processes. The weaker link between temperature and pH 

suggests indirect interactions, likely influenced by microbial activity and feeding. Together, these findings 

emphasize that aquaponic resilience depends on monitoring parameters in an integrated manner, rather than in 

isolation. Multivariate analysis via PCA revealed distinct clusters of water quality conditions that aligned with 

different fish performance states. These patterns suggest that simultaneous declines in pH and DO create stress 

scenarios, reinforcing the need for multi-parameter monitoring to safeguard fish welfare. Similar conclusions 

have been reported in broader aquaponics and fish welfare studies [5], [15], supporting the generalizability of 

these results. Overall, the study highlights both the utility and limitations of PID regulation. While effective at 

stabilizing averages, PID alone cannot anticipate or prevent critical events in dynamic environments. This 

limitation opens opportunities for advanced predictive and adaptive control strategies. The validated dataset 

presented here can serve as a benchmark for training machine learning models—including Random Forests, 

neural networks, and discriminant analysis—to detect early warning signs and optimize system stability [16], 

[21], [22]. 

This work was conducted on a domestic-scale aquaponic unit, with a limited number of fish and plants, and 

using low-cost sensors. While these conditions restrict direct extrapolation to industrial systems, they reflect 

realistic challenges of small-scale and emerging aquaponic operations. Future research should expand to larger 

and commercial systems, integrate additional biological indicators such as growth or mortality, and adopt 

higher-precision instrumentation. By addressing these aspects, predictive control systems can move from 

experimental validation toward scalable solutions for sustainable aquaponics. 
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