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This study evaluates the reliability and suitability of long-term water quality data
collected from a sustainable aquaponics system equipped with a pH, dissolved
oxygen, and temperature regulation control strategy based on a PID algorithm.
Although PID control was implemented to maintain parameters within optimal
biological ranges, natural fluctuations and out-of-range measurements were
recorded, particularly in pH. Rather than being considered anomalies, these
deviations represent realistic environmental variations that must be captured for
comprehensive system analysis. A thorough data validation process was conducted,
including descriptive statistics, outlier detection, correlation analysis, principal
component analysis (PCA), and temporal stability evaluation. Results confirmed
the absence of missing data, the presence of controlled variability in dissolved
oxygen and temperature, and meaningful correlations between parameters, with pH
showing the highest variability. Autocorrelation and long-term trend analyses
indicated stable measurement patterns that reflect real-world aquaponic dynamics.
The validated dataset provides a robust foundation for future studies, particularly
for the development of artificial intelligence (Al)-based predictive models aimed
at early detection of fish distress or mortality.

© The Author 2025. Keywords: Aquaponics, PID control, Water quality monitoring, Data validation,
Published by ARDA. Sustainable aquaculture

1. Introduction

Aquaponics, which integrates aquaculture and hydroponics into a recirculating system, is increasingly
recognized as a sustainable food production approach that maximizes resource efficiency and reduces
environmental impact [1], [2], [3]. In these systems, fish waste provides nutrients for plants, while roots purify
the water, reducing fertilizer inputs and water use. To sustain fish health, plant growth, and microbial
biofiltration, precise regulation of water quality parameters such as pH, temperature, and dissolved oxygen (DO)
is essential [4], [5], [6]. Moreover, fish welfare in aquaponic systems is closely related to water quality,
particularly in connection with feed and waste management [5].
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Automatic control strategies have been introduced to stabilize these parameters. Proportional-Integral—
Derivative (PID) controllers, in particular, are widely applied due to their robustness and simplicity. Supriadi et
al. (2019) demonstrated Arduino-based proportional control of pH and temperature in aquaponics [7], while
more advanced Smart Aquaponics implementations combined automatic PID tuner tools with manual fine-
tuning of K,, Ki, and Kd gains across interconnected units [8]. However, system nonlinearities and
environmental variability still generate deviations from setpoints, even under PID regulation [9], underscoring
the need to analyze system performance under both controlled and uncontrolled conditions. Beyond PID, other
strategies have been explored to improve resilience. Fuzzy logic-based controllers have been successfully
applied to regulate pH and temperature in aquaponics biofilters [10], while loT-based monitoring and machine
learning frameworks have been integrated for predictive control and real-time decision support [11], [12].
Despite these advancements, one critical aspect remains insufficiently addressed: whether collected data are
reliable, representative, and sufficiently variable for advanced modeling. Data validation is crucial for long-
term monitoring, where sensor drift, noise, or missing records can compromise analytical outcomes [13]. In
aquaponics, datasets capturing both stable ranges and outliers caused by stress or control limitations are
indispensable for predictive tools capable of early error detection and decision support [14], [15].

While prior works have primarily emphasized controller performance or short-term monitoring [7], [10], [11],
few studies have validated extended time-series datasets that reflect the real variability and limitations of PID
regulation under operational conditions. Addressing this gap, the present study introduces an eight-month
dataset from a domestic aquaponics system regulated with PID control. Comprehensive validation was
conducted—including descriptive statistics, outlier analysis, correlation, and principal component analysis
(PCA), and temporal stability tests—to assess data quality and relevance. The results confirm strong internal
consistency, realistic variability, and meaningful parameter relationships. By establishing a validated dataset
that captures authentic deviations, this work provides a robust foundation for future development of Al-based
predictive control systems aimed at enhancing stability and sustainability in aquaponic operations [12], [15].

2. Materials and methods
2.1. System description

The experimental aquaponic system operated in a closed-loop recirculation configuration, integrating the
rearing of red tilapia (Oreochromis niloticus) with the cultivation of crisp lettuce (Lactuca sativa var. crispa).
The main rearing tank (1) had a volume of 800 L (1 m? surface area) and was stocked with 30 juvenile tilapia,
corresponding to a density consistent with small-scale aquaponic trials. The tank was instrumented with
submerged sensors for dissolved oxygen (Model AR8406), water temperature (DS18B20 submersible
thermocouple), and pH (Arduino-compatible PH45 probe). Two internal aerators were installed to maintain
dissolved oxygen within the optimal range for both fish and plants. Water was circulated through a PVC outlet
connected to a submersible JUIYU pump (800 L/h, 12 V DC, 5 m head) located at the tank bottom. The pump
was initially fitted with narrow slits to prevent the escape of fingerlings, later widened as the fish grew to allow
the passage of suspended solids.

The first filtration stage consisted of a cylindrical clarifier (2) for gravitational sedimentation of coarse
particulate matter, including uneaten feed and feces. The second stage was a mechanical filtration unit (3) with
a fine-mesh screen to capture finer suspended particles. The third stage was a biofilter (4), packed with synthetic
polyester fiber and thoroughly cleaned plastic bottle caps. These materials were selected for their high surface
area and structural heterogeneity, favoring colonization by nitrifying bacteria responsible for oxidizing
ammonia into nitrite and subsequently into nitrate, thereby supplying plants with assimilable nitrogen.The
nutrient-enriched effluent entered a floating raft hydroponic bed (5), where approximately 25-30 lettuce plants
were cultivated in net pots inserted into perforations in a polystyrene sheet. Plant roots were in direct contact
with the circulating water, enabling nutrient uptake and further water polishing. After this stage, the treated
water returned by gravity to the fish tank (1), completing the recirculation loop.
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Throughout the system, a Raspberry Pi 4 served as the supervisory control unit, acquiring sensor inputs and
managing actuators in real time. It activated the aerators when dissolved oxygen dropped, a cold-water injection
pump when temperature exceeded the target range, an aquarium glass heater during temperature drops, and a
peristaltic pump for dosing apple vinegar or sodium bicarbonate in response to pH deviations. A schematic of
the system is presented in Figure 1.
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Figure 1. Tilapia tank (1), mechanical filter (2), biofilter (3), hydroponic beds (4), and water pump (5) in the
aquaponic system

2.2. Control strategy

The unit operated off-grid using a photovoltaic array rated at 400 Wp, which charged a 12 V, 120 Ah LiFePO.
battery through a 40 A MPPT controller. During daytime operation, the PV array directly supplied power to the
DC instrumentation and actuators while simultaneously charging the battery. When irradiance was insufficient
(nighttime or cloudy conditions), the battery bank provided an uninterrupted supply to all loads. This automatic
exchange between photovoltaic generation and stored energy ensured backup capacity and continuity of supply,
thereby guaranteeing stability in actuator responses and uninterrupted acquisition of sensor data. The energy
configuration allowed the system to operate autonomously for approximately 48 hours without solar input,
securing data continuity even under adverse weather conditions.

A Raspberry Pi 4 functioned as the supervisory controller and data hub, acquiring real-time signals from the
dissolved oxygen (AR84006), temperature (DS18B20), and pH (PH45) sensors. Based on these measurements,
a Proportional-Integral-Derivative (PID) algorithm computed corrective actions relative to predefined setpoints
(pH =7.0, DO = 6 mg/L, temperature = 25 °C) and their allowable biological ranges.

Temperature regulation was bidirectional, when water temperature exceeded the upper threshold, a 12 V
submersible pump injected cold water from a sealed auxiliary reservoir; conversely, when temperature dropped
below the lower bound, a 300 W thermostat-controlled heater was activated to restore the setpoint. pH stability
was maintained via a dual-channel peristaltic pump, which dosed apple vinegar or diluted sodium bicarbonate
according to the PID output. Dissolved oxygen was controlled through two 12 V DC aerators (15 W, 800 L/h
each), automatically engaged when levels approached the minimum threshold for tilapia welfare. In parallel
with these conditional actions, a solids-lift submersible pump operated continuously to sustain water
recirculation and solids removal. All measurements, actuator states, and PID outputs were locally logged and
synchronized to a Firebase Realtime Database when internet connectivity was available, ensuring continuous
monitoring and full traceability of system performance. A schematic of the control architecture is presented in
Figure 2.
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Figure 2. Solar-powered control architecture. Raspberry Pi 4 reads dissolved oxygen, temperature, and pH and
drives actuators: continuous solids-lift submersible pump; cold-water injection pump; two 12 V, 15 W
aerators; dual-channel peristaltic dosing; and a 300 W thermostat heater. Power is supplied by a 400 Wp PV
array, 12 V 120 Ah LiFePO. battery, and 40 A MPPT controller; an inverter is used only when the AC heater
is operated from the battery

2.3. Experimental design and procedure

The aquaponic system was configured as a closed-loop arrangement integrating the rearing tank, biofiltration
units, and the hydroponic grow bed. Tilapia (Oreochromis niloticus) were selected as the experimental species
due to their robustness and adaptability to recirculating aquaculture systems. The rearing tank (800 L, 1 m?
surface area) was stocked with 30 juvenile tilapia, while approximately 25-30 lettuce plants (Lactuca sativa
var. crispa) were cultivated in the floating raft bed. This configuration provided a balanced nutrient exchange
between aquaculture and hydroponics, maintaining water quality parameters within biologically acceptable
thresholds.

Water quality monitoring was conducted continuously using the sensors integrated into the Raspberry Pi 4,
which recorded pH, temperature, and dissolved oxygen at predefined intervals. These measurements were
automatically logged and served as inputs for the PID-based control system. The closed-loop feedback ensured
that deviations from setpoints were immediately corrected through actuation.

Thresholds for favorable operation were established based on literature values for tilapia welfare and lettuce
growth. Water temperature was maintained within 24-28°C, with corrective actions triggered when it exceeded
28°C (activation of the auxiliary cold-water pump) or dropped below 24°C (engagement of the 300 W
thermostat-controlled heater) [5], [10]. The acceptable pH range was 6.5-7.5, with the setpoint fixed at 7.0,
consistent with both tilapia tolerance and nutrient availability for plants [5], [10]. Dissolved oxygen (DO) was
kept above 5 mg/L, with aerators activated automatically when DO approached this threshold, thereby ensuring
adequate oxygenation for tilapia welfare [5], [15].

Sensor calibration was performed weekly in accordance with manufacturer guidelines and widely adopted
protocols. The pH probe (PH45) was adjusted using the manufacturer’s potentiometric procedure (2.5 V in pH
7 buffer) and calibrated with standard buffer solutions at pH 4.0 and 7.0. The dissolved oxygen sensor
(AR84006), factory-calibrated and certified, was periodically verified in air-saturated water, checked with
sodium sulfite solution for zero reference, and occasionally cross-validated using a YSI meter. The temperature
sensor (DS18B20) was verified against a laboratory-grade glass thermometer at the start of the experiment and
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during periodic maintenance. According to manufacturer specifications, accuracies were +0.1-0.2 pH units,
+0.5 °C for temperature, and +0.3 mg/L for dissolved oxygen, ensuring reliable and traceable measurements
throughout the study.

The experimental phase lasted eight months and encompassed multiple production cycles. Data collected during
this period were later used for system validation and for the development of predictive artificial intelligence
models. In this way, the aquaponic installation functioned not only as a life-support system for fish and plants
but also as a reliable experimental platform for acquiring validated datasets.

2.4. Data analysis and processing

The collected data underwent a comprehensive preprocessing phase to ensure quality and consistency.
Measurements outside the biologically relevant ranges—pH between 5 and 9, dissolved oxygen (DO) between
0 and 15 mg/L, and temperature between 18 and 35 °C—were identified as anomalies. Specifically, 92 pH
readings fell outside the optimal range and were treated as outliers for descriptive and trend analyses, following
standard procedures for aquaponics data validation [15], [16].

Descriptive statistics were computed for each variable, including mean (X), standard deviation (¢), median, and
interquartile range (IQR), according to the following expressions:

N N
_ 1 1 .
x=Nle-, o= mZ(xi—x) (D
i=1 =1
Median = xn+1 IQR = Q3 — (4 (2)

2

Where x; represents the i-th measurement and N the total number of measurements. These statistics provided a
summary of central tendency and variability within the system [15].

Long-term trends were evaluated using moving averages and moving standard deviations over a 30-
measurement window [16], which enabled visualization of temporal variability and detection of deviations from
the target ranges. Additionally, time series were decomposed into trend, seasonal, and residual components
using an additive model [17]:

xt=Tt+St+Rt (3)
Where T; represents the trend, S; the seasonal variation, and R; the residual (noise) at time t. This decomposition

facilitated the identification of periodic fluctuations caused by environmental or operational cycles [17].

Autocorrelation analysis was performed to detect temporal dependencies, computing the autocorrelation
function (ACF) for lags up to 50 measurements:

_ SR =) (k=)
Z{'V=1(xt_f)2

Pk “4)
Where p, is the autocorrelation at lag k. This provided information on the system's memory and the
effectiveness of PID control loops [15], [18].

Finally, the data were visualized using line graphs, histograms, and bands of moving average + standard
deviation. Optimal operating ranges were shaded for clarity (e.g., pH 5-9, DO 4-8 mg/L, temperature 22—
27 °C), and median lines with 95% confidence intervals were included to highlight stability and variability over
time [16], [17]. These analyses provided a comprehensive characterization of system performance, supporting
subsequent validation and predictive modeling of water quality parameters [15], [18].
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2.5. System validation

The validation of the aquaponic system was performed by comparing measured pH, dissolved oxygen (DO),
and temperature values with the predefined setpoints of the PID control system. Key performance indicators,
including the mean absolute error (MAE) and root mean squared error (RMSE), were computed to quantify
control accuracy:

N N
1 1
MAE = N E lox; — Xsee |, RMSE = N § (x; — Xger)? ()
7 i=1

i=1

Where x; is the measured value at time i, X is the setpoint, and N is the number of measurements. These
metrics quantified deviations from target values and allowed evaluation of system precision.

The computed errors demonstrated effective control performance across all monitored parameters. For pH, the
MAE was 0.599 and the RMSE 0.846, indicating that deviations from the setpoint remained minimal. Dissolved
oxygen exhibited an MAE of 0.758 and an RMSE of 0.927, while water temperature showed an MAE of 0.800
and an RMSE of 1.042. These results confirm that the PID controller maintained stable operational conditions
within the ranges suitable for both tilapia welfare and lettuce cultivation.

Previous research has demonstrated the effectiveness of automated water quality control in aquaponics. Fuzzy
logic-based controllers have been successfully applied to regulate pH and temperature, minimizing oscillations
and improving overall system stability [19]. Similarly, modular IoT-based monitoring systems with edge
computing have been shown to maintain optimal conditions for both fish and plants through real-time data
acquisition and adaptive control [20].

The long-term stability of the present system was further evaluated through autocorrelation and trend
decomposition analyses. Positive short-lag autocorrelation indicated smooth parameter adjustments, while the
decomposition revealed minimal seasonal or environmental influence on overall dynamics [21]. Together, these
results confirm that the PID controller sustained a stable operational environment suitable for both tilapia rearing
and lettuce cultivation.

2.6. Data acquisition and logging

Data acquisition was conducted using a modular IoT system that integrated sensors for pH, dissolved oxygen,
and temperature. The system used edge computing to process data locally, minimizing latency and enabling
real-time control decisions. Data were recorded at regular intervals, generating time-series datasets suitable for
system performance analysis and Al-based predictive modeling.

Data integrity was ensured through cloud synchronization and local redundancy, allowing remote monitoring
and post-processing analysis. Prior studies have confirmed that loT-enabled aquaponic monitoring improves
both operational efficiency and data reliability, particularly when combined with adaptive algorithms for real-
time control [22]. Additionally, sensor validation techniques are crucial for maintaining accurate long-term
measurements in aquaponics [23].

3. Results

3.1. Descriptive statistics and data validation

A preliminary analysis of the dataset was conducted to evaluate its completeness, central tendencies, variability,
and compliance with recommended biological ranges for aquaponic systems. The dataset comprises 1,823
observations of three key water quality parameters: pH, dissolved oxygen (DO), and temperature. No missing
values were detected across the dataset, ensuring consistency for further statistical and machine learning
applications.
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The descriptive statistics are summarized in Table 1. The mean pH was 6.60 with a standard deviation of 0.75,
while DO averaged 5.57 mg/L with moderate variability (standard deviation = 0.82). Temperature showed the
lowest variability, with a mean of 24.70 °C and a standard deviation of 0.99, remaining tightly clustered around
the optimal range for aquaponic operation. Out-of-range values were primarily detected in pH measurements
(92 instances), whereas DO and temperature measurements remained fully within the recommended ranges.

Table 1. Summary statistics of water quality parameters

Parameter Count  Mean Std Min 25% 50% 75% Max

pH 1823 6.60 0.75 4.50 6.20 6.72 7.10 8.90

Dissolved Oxygen (mg/L) 1823 5.57 0.82 3.10 4.93 5.60 6.30 6.97
Temperature (°C) 1823 2470 099 2200 24.19 2475 2494 27.19

To visually assess variability and the presence of outliers, Figure 3 presents boxplots for each parameter. Median
values are highlighted in red, means are shown as black markers, and 95% confidence intervals are represented
as error bars. Shaded areas correspond to the biologically recommended operating ranges for aquaponic systems
(pH 5-9, DO 0-15 mg/L, and temperature 18—35 °C). The visualization reveals that while DO and temperature
remained within acceptable bounds, pH measurements exhibited occasional deviations below the lower
threshold, reflecting natural fluctuations in the system.

Outlier Detection in Water Quality Parameters
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Figure 3. Boxplot of water quality parameters with recommended ranges, mean values, and 95% confidence
intervals

3.2. Correlation analysis

To examine the interdependence among water quality parameters, a Pearson correlation analysis was conducted.
The correlation matrix is presented in Figure 4, where colors indicate the strength and direction of pairwise
associations. The results revealed a moderate positive correlation between pH and dissolved oxygen (r = 0.55),
a moderate positive correlation between dissolved oxygen and temperature (r = 0.67), and a weak positive

correlation between pH and temperature (r = 0.20). All correlations were statistically significant (p < 0.001).
Correlation Matrix of Water Quality Parameters

. PH

Dissolved_Oxygen

Temperature

]
pH Dissolved_Oxygen Temperature

Figure 4. Pearson correlation matrix of water quality parameters (pH, dissolved oxygen, and temperature)
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To statistically validate these findings, p-values were computed for each pairwise correlation. As shown in Table
2, all relationships were highly significant (p < 0.001), confirming that the observed patterns are unlikely to be
attributed to random variability in the dataset.

Table 2. P-values of pairwise correlations among water quality parameters

pH Dissolved Oxygen Temperature

pH 1.000000e+00 2.180403e-143 4.061121e-18
Dissolved Oxygen 2.180403¢e-143 1.000000e+00 1.731474e-240
Temperature 4.061121e-18 1.731474e-240 1.000000e+00

To further illustrate these associations, Figure 5 depicts the scatterplot and regression line between pH and
dissolved oxygen. While the regression line suggests a moderate positive correlation (r = 0.55), the wide
dispersion confirms that the relationship is not strictly linear. A positive association was expected because
photosynthetic activity typically increases both pH and DO, whereas respiration decreases them simultaneously.
However, in this system, the expected trend was attenuated by regulatory interventions such as pH dosing and
aeration, as well as by natural fluctuations in fish metabolism and microbial processes. These combined factors
explain why the relationship appears weaker and more scattered than theoretically anticipated.

Relationship between pH and Dissolved Oxygen
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Figure 5. Scatter plot of pH versus dissolved oxygen with linear regression fit, illustrating the positive
association between the two parameters

3.3. Principal component analysis (PCA)

To explore patterns and relationships among water quality parameters, a Principal Component Analysis (PCA)
was conducted. Before analysis, variables (pH, dissolved oxygen, and temperature) were standardized using z-
score normalization (mean = 0, standard deviation = 1) through the StandardScaler function in scikit-learn. This
step ensured comparability across variables with different units and scales. The first two principal components
captured most of the variance, with PC1 accounting for 65.8% and PC2 for 26.8% of the total variability (Figure
6).

PC1 showed negative loadings for temperature (—0.67), pH (-0.56), and dissolved oxygen (—0.49). PC2 was
mainly influenced by dissolved oxygen (+0.78) and pH (-0.62), while temperature contributed minimally (—
0.05). The scatterplot (Figure 6), colored by fish condition, revealed three distinct clusters corresponding to the
dataset labels. Condition 1 formed a cluster on the left side of the plot, Condition 2 clustered in the upper-right
region, and Condition 3 clustered in the lower-right region. Overall, PC1 separated the samples according to
combined water quality gradients, while PC2 primarily differentiated observations based on variation in
dissolved oxygen and pH.
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Figure 6. PCA scatterplot of water quality parameters. Points are colored according to fish condition. The axes
indicate the proportion of variance explained by each principal component

3.4. Temporal stability of water quality parameters

The long-term evolution of water quality parameters in the aquaponic system was evaluated through time series
of pH, dissolved oxygen (DO), and temperature. Statistical indicators (Table 3) confirmed that all three variables
exhibited significant decreasing trends according to the Mann—Kendall test (p < 0.001). The linear trend analysis
showed negative slopes for pH (—0.00045 units per measurement, R> = 0.10), DO (-0.00089 mg/L per
measurement, R? = 0.33), and temperature (—0.00088 °C per measurement, R? = 0.21), although the magnitude
of decline was more pronounced for DO. Variability was highest for dissolved oxygen (CV = 14.7%), followed
by pH (CV = 11.3%), while temperature was the most stable parameter (CV = 4.0%), consistently close to the
mean operational value of 24.7 °C.

Table 3. Statistical summary and trend analysis of water quality parameters

Variable Mean cv Linear trend R? ADFp- MK trend MK p-
(%) slope value value
pH 6.60 11.30 —0.00045 0.10 0.088 Decreasing <0.001
Dissolved
1550vE 557 1474 ~0.00089 033 0069  Decreasing  <0.001
oxygen
Temperature (°C) 24.70  4.04 —0.00088 0.21 0.308 Decreasing <0.001

To visualize these dynamics, Figure 7 illustrates the trajectories of each parameter across the measurement
period. The pH series (top panel, blue) shows an initial range of 7.6-7.8, followed by a sharp decline to
approximately 6.0 at the fourth measurement. A partial recovery is observed thereafter, but the series ends with
a further drop to about 5.6. Dissolved oxygen (middle panel, green) remained relatively stable between 5.5 and
6.0 mg/L until the fifth measurement, after which it exhibited a marked decline, reaching ~3.5 mg/L at the final
observation. By contrast, temperature (bottom panel, red) remained within a narrow range around the mean,
confirming its stability relative to the other parameters.
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Figure 7. Long-term time series of water quality parameters. Panels show pH (top), dissolved oxygen
(middle), and temperature (bottom) over the measurement period, highlighting temporal trends and critical
decreases in pH and oxygen

3.5. Autocorrelation and rolling variability

To further investigate temporal dependencies in water quality parameters, autocorrelation functions (ACF) were
computed alongside rolling mean and standard deviation bands for pH, dissolved oxygen (DO), and temperature
(Figure 8). The pH series exhibits an initial autocorrelation near 1 that gradually decreases but remains positive
and significant up to lag ~40-50, indicating long-term memory: if the water has a certain pH todays, it is highly
likely to maintain similar values in subsequent measurements. Dissolved oxygen shows a similar pattern,
remaining significant until approximately lag 35-40, reflecting the continuity of oxygen dynamics influenced
by environmental conditions and sustained biological consumption. Temperature displays a nearly identical
pattern to pH, with high persistence and a slow decay of autocorrelation, consistent with gradual environmental
changes. The rolling mean and standard deviation bands within the same figure highlight periods of higher
variability. While temperature remains stable, pH and DO show intermittent fluctuations, corroborating the
trends observed in the time series.

Overall, all three water quality parameters demonstrate strong positive autocorrelation at short and medium lags,
confirming that their evolution is strongly influenced by prior values. In practical terms, the physicochemical
processes governing pH, DO, and temperature exhibit temporal inertia, changing gradually rather than abruptly
between consecutive measurements.
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Figure 8. Combined visualization of autocorrelation functions (ACF) and rolling mean +1 standard deviation
bands for pH (top), dissolved oxygen (middle), and temperature (bottom), illustrating both temporal
dependence and variability patterns
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3.6. Trend analysis with rolling mean and variability

A long-term trend analysis with variability was conducted for pH, dissolved oxygen (DO), and temperature
using a 30-point rolling mean and +1 standard deviation bands (Figure 9). The pH series (top panel, blue)
exhibits a general downward trend, decreasing from values around 7.5-8.0 to approximately 6.0-6.2 in the final
measurements. The variability, indicated by the shaded band, remains relatively stable for most of the period
but shows increased dispersion towards the end. This pattern indicates a progressive acidification of the water,
with occasional episodes of short-term fluctuation.

Dissolved oxygen (middle panel, green) begins near 6.2—6.5 mg/L and shows a slight peak around the third to
fourth measurement (~6.7 mg/L). Subsequently, a marked decline occurs, reaching approximately 3.5-4.0 mg/L
in the last observations. The expansion of the variability band in the final points reflects greater instability in
oxygen levels, indicating a sustained loss of dissolved oxygen over time.

Temperature (bottom panel, red) starts around 25 °C, rises to ~27 °C at the fourth measurement, and then
gradually decreases to near 23 °C by the end. Variability is more pronounced at intermediate points, reflecting
temporary thermal oscillations. Overall, temperature displays a slight downward trend with minor fluctuations
throughout the period.

This combined analysis of rolling mean and variability confirms the temporal patterns observed in the raw time
series, highlighting progressive acidification, decreasing oxygen availability, and moderate temperature
fluctuations, which are critical for maintaining optimal aquaponic system performance. Among these
parameters, dissolved oxygen and pH emerged as the most limiting factors, suggesting that oxygen depletion
and progressive acidification were the main stressors contributing to reduced fish survival during the study.
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Figure 9. Long-term trends of water quality parameters with 30-point rolling mean and +1 standard deviation
bands for pH (top), dissolved oxygen (middle), and temperature (bottom)

An advanced analysis of water quality parameters was conducted using seasonal-trend decomposition with the
seasonal decompose method (Figure 10) to separate long-term trends from potential cyclical patterns. The
decomposition confirmed that the previously observed trends—progressive acidification of pH, declining
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dissolved oxygen, and moderate cooling of temperature—were consistent across the series, while the seasonal
components remained negligible for all parameters, indicating no marked cyclic behavior. These results
reinforce that the deterioration of water quality in the aquaponic system followed a continuous, non-cyclic trend,
in agreement with the rolling mean and variability analysis (Figure 9).
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Figure 10. Seasonal-trend decomposition of pH (top), dissolved oxygen (middle), and temperature (bottom),
illustrating the long-term downward trends and negligible seasonal components

3.7. Distribution of water quality parameters

The distribution of water quality parameters was analyzed using histograms overlaid with kernel density
estimates (KDE) for pH, dissolved oxygen (DO), and temperature (Figure 11). The pH distribution (top panel,
blue) is unimodal with a slight left skew. Most measurements occur between 6.8 and 7.2, corresponding to near-
neutral water, while lower values between 5 and 6 appear less frequently, indicating occasional episodes of
acidification. Overall, the majority of samples maintain a near-neutral pH, with rare deviations toward acidic
conditions. Dissolved oxygen (middle panel, green) exhibits a bimodal distribution, with two main peaks around
5 mg/L and 6.2—6.5 mg/L. This pattern suggests the presence of two different conditions, potentially reflecting
temporal variations, spatial heterogeneity, or temperature-related effects on oxygen solubility. Temperature
(bottom panel, red) shows a multimodal distribution with peaks near 24, 25, and 26 °C, with the highest
frequency around 25 °C. The tails of the distribution indicate occasional lower (~22-23 °C) and higher (~27 °C)
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temperatures, likely associated with environmental or operational variability. Taken together, these distributions
indicate that pH remains mostly neutral with occasional acidification events, dissolved oxygen reflects two
distinct water quality scenarios, and temperature exhibits broader variability, which could influence both pH
and oxygen dynamics.
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Figure 11. Histograms with KDE for pH (top), dissolved oxygen (middle), and temperature (bottom),
illustrating the distribution patterns of water quality parameters in the aquaponic system

4. Conclusion and discussion

Unlike prior studies that mainly focused on parameter regulation through PID or fuzzy control [7], [12], the
main contribution of this work lies in validating a long-term, biologically consistent dataset under PID
regulation. This dataset captures both stable operating conditions and critical deviations, which are often
overlooked but are essential for developing predictive tools. By ensuring completeness, consistency, and
realistic variability, the dataset offers a reliable foundation for future Al-based models aimed at improving
aquaponic management [13], [15].

The results demonstrate that, although the PID controller maintained average values within acceptable ranges
for the species under study—typically a pH of 6.5-8.5 and dissolved oxygen (DO) above 5 mg/L— it failed to
prevent critical excursions in both pH and DO. Among the three parameters, pH exhibited the highest proportion
of out-of-range values, confirming its critical role in overall stability. Time series and rolling statistics revealed
progressive acidification and sustained oxygen depletion, while autocorrelation confirmed that these deviations
persisted across consecutive measurements, increasing biological stress. Seasonal-trend decomposition further
indicated that these changes were progressive rather than cyclical, reflecting a genuine deterioration of water
quality.
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Correlation analyses provided additional insights into system dynamics. The strong negative relationship
between temperature and DO is consistent with oxygen solubility laws, while the positive association between
pH and DO reflects coupled biological and chemical processes. The weaker link between temperature and pH
suggests indirect interactions, likely influenced by microbial activity and feeding. Together, these findings
emphasize that aquaponic resilience depends on monitoring parameters in an integrated manner, rather than in
isolation. Multivariate analysis via PCA revealed distinct clusters of water quality conditions that aligned with
different fish performance states. These patterns suggest that simultaneous declines in pH and DO create stress
scenarios, reinforcing the need for multi-parameter monitoring to safeguard fish welfare. Similar conclusions
have been reported in broader aquaponics and fish welfare studies [5], [15], supporting the generalizability of
these results. Overall, the study highlights both the utility and limitations of PID regulation. While effective at
stabilizing averages, PID alone cannot anticipate or prevent critical events in dynamic environments. This
limitation opens opportunities for advanced predictive and adaptive control strategies. The validated dataset
presented here can serve as a benchmark for training machine learning models—including Random Forests,
neural networks, and discriminant analysis—to detect early warning signs and optimize system stability [16],
[21], [22].

This work was conducted on a domestic-scale aquaponic unit, with a limited number of fish and plants, and
using low-cost sensors. While these conditions restrict direct extrapolation to industrial systems, they reflect
realistic challenges of small-scale and emerging aquaponic operations. Future research should expand to larger
and commercial systems, integrate additional biological indicators such as growth or mortality, and adopt
higher-precision instrumentation. By addressing these aspects, predictive control systems can move from
experimental validation toward scalable solutions for sustainable aquaponics.
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