An evaluation of CNN and ANN in prediction weather forecasting: A review
DOI:
https://doi.org/10.37868/sei.v3i2.id146Abstract
Artificial intelligence through deep neural networks is now widely used in a variety of applications that have profoundly altered human livelihoods in a variety of ways. People's daily lives have become much more convenient. Image recognition, smart recommendations, self-driving vehicles, voice translation, and a slew of other neural network innovations have had a lot of success in their respective fields. The authors present the ANN applied in weather forecasting. The prediction technique relies solely upon learning previous input values from intervals in order to forecast future values. And also, Convolutional Neural Networks (CNNs) are a form of deep learning technique that can help classify, recognize, and predict trends in climate change and environmental data. However, due to the inherent difficulties of such results, which are often independently identified, non-stationary, and unstable CNN algorithms should be built and tested with each dataset and system separately. On the other hand, to eradicate error and provides us with data that is virtually identical to the real value we need Artificial Neural Networks (ANN) algorithms or benefit from it. The presented CNN model's forecasting efficiency was compared to some state-of-the-art ANN algorithms. The analysis shows that weather prediction applications become more efficient when using ANN algorithms because it is really easy to put into practice.
Published
How to Cite
Issue
Section
Copyright (c) 2021 Shahab Kareem, Zhala Jameel Hamad, Shavan Askar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.