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Abstract 

This research proposes the application of the dragonfly and fruit fly algorithms to 

enhance estimates generated by the Fama-MacBeth model and compares their 

performance in this context for the first time. To specifically improve the dragonfly 

algorithm's effectiveness, three parameter tuning approaches are investigated: 

manual parameter tuning (MPT), adaptive tuning by methodology (ATY), and a 

novel technique called adaptive tuning by performance (APT). Additionally, the 

study evaluates the estimation performance using kernel weighted regression 

(KWR) and explores how the dragonfly and fruit fly algorithms can be employed 

to enhance KWR. All methods are tested using data from the Iraq Stock Exchange, 

based on the Fama-French three-factor model. The results show that the dragonfly 

algorithm, particularly when using MPT and APT, demonstrates superior 

performance in improving the accuracy of Fama-MacBeth estimates and enhancing 

the effectiveness of the KWR approach. 
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1.   Introduction 

The Fama-MacBeth model is a stalwart of econometrics with a strong framework for cross-sectional regression 

analysis, primarily when used to apply to independent variables as surrogates [1]. It finds usage in identifying 

the most significant factors that affect the studied variable [2, 3], measurement of model fitness [4], and 

estimation of time-varying model parameters [5]. The model approach goes in two broad steps: initially, beta 

coefficients are estimated using time-series regressions, followed by gamma estimation using cross-sectional 

regressions after introducing the beta of the first step as independent variables. Though they are undoubtedly 

crucial, sophisticated model estimates are not flawless, and this is something that encourages us to seek 

improved estimation approaches. In this study, we suggested applying two artificial intelligence algorithms to 

achieve the optimal solution by approximating the parameter of the Fama-MacBeth regression model by 

applying the fruit fly algorithm and the dragonfly algorithm, and comparing the outcome with the kernel weights 

regression obtained in the study of [6]. 

The Fruit Fly Optimization Algorithm (FOA) is a highly efficient optimization technique inspired by the 

foraging behavior of fruit flies, which rely on their senses of smell and sight to locate optimal food sources. 

FOA has demonstrated its effectiveness in solving a wide range of optimization problems across various fields. 

https://creativecommons.org/licenses/by/4.0/
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As a result, it has gained significant attention and has been successfully applied to numerous real-world 

problems, including financial modeling [7], operational optimization in chemical engineering [8], mathematical 

analysis in cloud computing [9], power load forecasting [10], web auction logistics services [11], PID controller 

tuning [12], the multidimensional knapsack problem [3], and many other scientific applications [13]. 

One prominent application of FOA is in radar target recognition, specifically in analyzing high-resolution range 

profiles (HRRP). To enhance HRRP performance, FOA is employed to optimize the model parameters of the 

Generalized Regression Neural Network (GRNN), a model widely used in science, engineering, and finance. 

The dragonfly optimization algorithm (DOA), on the other hand, is inspired by the static and dynamic flight 

behaviors of dragonflies during hunting and migration. It mimics the swarm intelligence of dragonflies to 

explore and exploit the search space effectively. By leveraging these behaviors, the DOA is capable of finding 

optimal or near-optimal solutions to complex optimization problems. Its versatility continues to drive the 

expansion of its applications across various domains. 

The dragonfly optimization (DO) approach has drawn a great deal of attention from several domains of 

application owing to its proven capability in addressing challenging optimization problems. Previous work has 

investigated a broad variety of applications, demonstrating the flexibility and universality of this algorithm. DA 

has also been employed as an example to identify pixels containing salient object information in images [14], 

leading to fast and efficient object segmentation. During parameter tuning, the authors in [15] utilized DA to 

select the optimal feature set among candidates and the optimal parameter values (penalty factor and kernel 

parameter) for KELM. In this case, DA showed its strength as a search strategy. Iteratively tuning DA 

parameters is feasible; DA has also been applied as an optimizer of support vector machine (SVM) parameters 

[16], with higher performance than PSOSVM and GASVM. The experiment also demonstrated that although 

the classification error rate is reduced by adding more solutions or generations, the computation time is longer.  

In several image processing applications, DA has demonstrated superior capabilities. It produced better results 

than previous methods when used to segment color fundus images [17]. According to [18], it has also been used 

in medical image watermarking approaches. In these cases, it made it easier to choose efficient pixels, resulting 

in greater correlation coefficient values compared to algorithms like PSO, GA, and random selection. In the 

field of forecasting, a DA-based artificial neural network was used to predict initial fuel demand in India [19].  

Although earlier studies have demonstrated the capabilities of fruit fly and dragonfly optimization algorithms 

in addressing optimization problems, it is worth noting that most studies focus on applications such as image 

processing or the optimization of neural network performance. This highlights the urgent need to extend the 

application of these two algorithms to sophisticated financial models like the Fama-MacBeth model so that their 

parameter estimates are derived with higher accuracy and model likelihood estimation errors are reduced, 

thereby increasing the accuracy of assessing asset pricing models. The Fama-MacBeth model presents a special 

estimation problem because it becomes more complicated when employing time-varying beta coefficients 

obtained in the first step as explanatory variables in the second step, described in terms of cross-sectional 

regression. 

This research aims to address this issue by developing improved estimators for this significant financial model.    

Beyond that, this paper is the first known attempt to make a direct comparison of the dragonfly and fruit fly 

algorithms' performance in estimating the Fama-MacBeth model. Moreover, the study seeks to enhance the 

efficiency of the KWR algorithm, one of the most widespread algorithms used in this area. To these ends, this 

study proposes the employment of the dragonfly and drosophila algorithms. For enhanced performance of the 

dragonfly algorithm itself, the study examined three approaches to parameter tuning: manual parameter tuning 

(MPT), adaptive tuning on methodology (ATY) [20], and an innovative new proposed adaptive parameter 

tuning approach based on performance. The performance of the aforementioned estimation methods will 

subsequently be compared with that of the kernel weighted regression (KWR). The research will be further 

extended to suggest the application of the dragonfly and fruit fly algorithms for optimizing the parameters of 
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the KWR method itself. All these methods will be experimented upon on the Iraq Stock Exchange dataset using 

the Fama-French three-factor model.  

2. Fama-Macbeth models (FM) 

The Fama-Macbeth regression model will be in the following form: 

𝑌𝑖,𝑡 =  𝛾̅0,𝑡 +  𝛾̅1,𝑡𝐵1,𝑖,𝑡 +  𝛾̅2,𝑡𝐵2,𝑖,𝑡 + ⋯ +  𝛾̅𝐾,𝑡𝐵𝐾,𝑖,𝑡 + 𝑢𝑖,𝑡       … (1) 

Where:  

𝑌𝑖,𝑡 shows the dependent variable with i =1, 2, 3… N variable  

t = 1, 2, 3,.,T  Time  

𝛽1,i,t , 𝛽2,i,t , 𝛽k,i,t  are independent variables taken from step 1 of FM represented by a time series regression. 

𝛾̅0,𝑡, 𝛾̅1,𝑡,  𝛾̅2,𝑡, … ,  𝛾̅𝐾,𝑡 denote the mean of the intercept 𝛾0,𝑡  and  𝛾 1,𝑡 , 𝛾 2,𝑡 , … , 𝛾 𝐾,𝑡 is the estimate of the effect 

of independent on dependent variables (in period t) for the K factors, and number observation T. u𝑖, is the error 

term independent identical distribution (iid) with (mean 0, variance 𝜎2).  

3. Methodology of estimation FM  

In this section, we suggest introducing the fruit fly optimization algorithm and dragonfly optimization 

Algorithms to a Fama-Macbeth model (FMFOA), (FMDA), respectively, of time series regression to estimate 

𝛽k,i,t   (proxy variables ) and cross-sectional regression to estimate 𝛾 𝐾,𝑡   

The important steps of the fruit fly optimization algorithm are parameter and population location initialization  

The main parameters of the FOA are the maximum iteration number (iter). This determines how many times 

the algorithm will iterate before stopping, the population size (flies) represents the number of fruit flies in the 

swarm, and the random flight distance range randValue. This defines the range within which fruit flies explore 

the search space randomly; each fly contains the number of parameters to be estimated.  

The fruit fly swarm location (𝜃 𝑖𝑛𝑡𝑖𝑎𝑙) is randomly initialized in the search space as follows.  

𝜃 𝑖𝑛𝑡𝑖𝑎𝑙 = 𝑟𝑎𝑛𝑑 ∗ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵      i=1,2,…N      ...(2) 

Where 𝜃 𝑖𝑛𝑡𝑖𝑎𝑙   in the first step of FM is 𝐵𝑘,𝑖,𝑡𝑖𝑛𝑡𝑖𝑎𝑙 for every time point t with k independent variables, and 

every dependent variable’s i, rand is a matrix of order (population size P (number of petameter)) random 

function which returns a value from the uniform distribution on the interval [0, 1]. 

In the second step of FM, the fruit fly swarm location (𝜃 𝑖𝑛𝑡𝑖𝑎𝑙 is 𝛾𝑆,𝑝𝑖𝑛𝑡𝑖𝑎𝑙 for every cross-sectional s. rand 

is a random matrix of order (NP (number of petameter)). the UB and LB are the upper and lower bounds of the 

fruit fly swarm location. 

A crucial step in the fruit fly optimization process is osphresis search. All flies have keen senses of smell. As if 

utilizing its sense of smell to identify possible food paths, each fly in this stage creates new locations surrounding 

its current location at random. This stage gives the flock the opportunity to search a larger area, which raises 

the likelihood of discovering new solutions at random and, consequently, by preventing an early convergence 

of the flock's unpredictable flight patterns to less-than-ideal sites, it also maintains diversity. Furthermore, the 

likelihood of discovering the best one. Then the swarm location is determined by searching based on the 

osphresis search, as the equation below illustrates.  

theta_swarm= 𝜃𝑖𝑛𝑡𝑖𝑎𝑙 + randValue   ….( 3) 

Where theta_swarm to estimate beta is beta_swarm(i, :), and to estimate Gamm, the theta_swarm is Gamma 

swarm (s,: ). 
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The value of randValue falls between -1 and 1. By guaranteeing small, localized motions within the range [-1, 

1], it preserves equilibrium between exploration (global search) and exploitation (local refining).  

It is a quantitative measure of the quality of the solution represented by the fruit fly site. It is calculated using a 

fitness function, which depends on the nature of the problem, as the fitness function varies depending on the 

problem being solved. The algorithm reflects the quality of this site in the context of the specific problem. 

In the context of the FM step, the smell concentration is calculated using the objective (fitness) function, which 

measures the quality of the proposed solution. This function is the root mean square error (RMSE). However, 

due to the odor concentration principle, the reciprocal of the RMSE is used instead.  

Smelli =1/RMSE        …(4) 

In the first step of FM, Smelli calculates for each fruit fly 𝐵𝑘,𝑖,𝑡𝑖𝑛𝑡𝑖𝑎𝑙, beta_swarm(i, :) (each fly represents the 

beta values of all independent variables), of the time series regression model with rolling regression. 

In the second step of FM for Smelli calculate to 𝛾𝑠,𝑖𝑛𝑡𝑖𝑎𝑙, Gamma swarm (s,: ), were used to conduct the cross-

sectional analysis.  

D) Determine the best location for vision search 

This is the location that achieves the highest smell concentration and the highest value of the (Smelli ) to estimate 

beta. 

[smellBest,best index]=max(smelli);with  𝐵𝑘,𝑖,𝑡 

[best smell,best_index]=max(smelli);with  beta_swarm(i, :) 

Then, the current maximum smell concentration value (bestSmell) is compared with the value (smellBest). If 

bestSmell > smellBest, smellBest is updated with bestSmell, and the fruit fly swarm flies towards that location 

with the maximum smell concentration value by using vision. 

if current_bestsmell > smellbest 

smellBest = bestSmell 

best_beta = beta_swarm(best index, :); 

    end 

And to estimate Gamma after introducing time-varying betas as independent variables in cross-sectional 

regression, as follows: 

 [SmellGAMMA Best,bestindex]=max(SmellGAMMA i);with  𝛾𝑠,𝑝𝑖𝑛𝑡𝑖𝑎𝑙   …(8) 

[best SmellGAMMA,best_index]=max(SmellGAMMA i);with Gamma swarm (s,: ) …(9) 

Then, the current maximum smell concentration value (best SmellGAMMA is compared with the value 

(SmellGAMMA Best. If best SmellGAMMA > SmellGAMMA Best, SmellGAMMA Best is updated with best 

SmellGAMMA, and the fruit fly swarm flies towards that location with the maximum smell concentration value 

by using vision. 

if current best SmellGAMMA > SmellGAMMA Best  

SmellGAMMA Best = best SmellGAMMA 

        best_beta = Gamma swarm (best index, :); 

    end 

The osphresis searching phase and vision searching phase are repeated until the smell concentration is not 

superior to the previous iterative smell concentration anymore, or the iterative number reaches the maximum 

iterative number. 
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For the dragonfly optimization algorithms to a Fama-MacBeth regression model, the algorithm below illustrates 

the steps used to estimate a Fama-MacBeth model using the dragonfly optimization algorithm. 

We start by initializing a swarm of dragonflies to estimate the beta coefficients of each of the available assets 

by specifying the number of dragonflies that will participate in the search and the beta values, then randomly 

initializing the starting positions of these dragonflies within the given solution space. Finally, to guide the 

movement of each dragonfly in the solution space, we assign it a random initial velocity or step vector where:  

A – Number of dragonflies (n): Determine the number of possible solutions to explore to estimate the beta 

coefficients for each dependent variable in the first step (time series regression) and in the second step (cross-

sectional regression) to estimate gamma coefficients.  

B – Solution space is determined based on theoretical predictions or previous studies in the first step. Bounds 

of the beta coefficients [βi,k,t]. For each dependent variable i from 1 to N, k variables, for each point time 

t=1,2…,T., and in the second step [γ k, s] s=1…T number of cross-sectional. 

C – Initial dragonfly locations (Pj (0)), j=1, …n 

Pj (0)=[𝜃0j(0), 𝜃1j(0),..., 𝜃kj(0)] 

Where (Pj (0)) in the first step to estimate beta is Pi,j t(0), and 𝜃0j(0) is βkijt(0) 

In the second step to estimate Gamma, the initial dragonfly locations are Pj,s(0), and 𝜃kj(0) is γ k.j,s (0). 

D – Initial step vectors V,j (0)  

The step vector represents the magnitude and direction of the movement the dragonfly will make in the solution 

space in subsequent iterations. ∆𝜃kj(0) represents the step vector of the j-th dragonfly. For each j-th dragonfly 

in the swarm, a vector ∆𝜃kj(0)  is created with the same dimensions as its position vector Xi. Its elements have 

relatively small random values around zero. These values determine the magnitude of the change in each 

element of the dragonfly's position Pj (0). They are concerned with the direction of the movement, that is, the 

direction in which the dragonfly will start moving in the solution space, the V,j (0) is: 

Vj (0)=[∆𝜃0j(0), ∆𝜃1j(0),..., ∆𝜃kj(0)] 

Where (Vj (0)) in the first step to estimate beta is Vi,j t(0), and ∆𝜃0j(0) is ∆βkijt(0) 

And in the second step to estimate Gamma, the initial step vectors are Vj,s(0) and ∆𝜃kj(0) is ∆γ k.j,s (0). 

To evaluate the quality of the solution represented by each dragonfly, the goal of the optimization process is to 

find the solution that gives the best value for the objective function (either a maximum or a minimum value, 

depending on the nature of the problem). 

In the context of estimating the beta coefficients for a time series regression in the first step of the Fama-

MacBeth model, the objective function measures how well the set of beta coefficients represented by each 

dragonfly explains the relationship between the dependent variable and the independent variables for each asset 

and each point in time. The objective function is represented by the root sum of square error (RMSE), measuring 

how well the estimated time series regression differs (based on current beta coefficients) from the true dependent 

variable, with the goal of minimizing RMSE. 

In the context of estimating the gamma coefficients for a cross-section regression in the second step of the Fama-

MacBeth model, the objective function measures how well the set of gamma coefficients represented by each 

dragonfly explains the relationship between the dependent variable and the independent variables, represented 

by the time-varying betas for each cross-section. The objective function is represented by the root sum of 

squared errors, measuring how well the estimated cross-section regression differs (based on the best parameters 

of the beta and current gamma coefficients) from the true dependent variable for each cross-section, to minimize  

RMSE. 
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The objective function value is calculated for each dragonfly to evaluate solutions and guide the search process. 

The objective function values are used to identify the best solutions that have been identified. Finding it so far 

(Food Pi), the food source in the algorithm, and also identifying the worst solution (the enemy in the algorithm 

(Enemy Pi)). This information guides the dragonflies' movement in subsequent iterations toward promising 

regions in the solution space and avoiding unfavorable regions. Updating the best solutions: In each iteration, 

the objective function values of the current solutions are compared with the best solutions found previously. If 

the dragonfly finds a better solution, the best solution is updated. 

For E – Update, the food source (Food Pi) and the enemy (Enemy Pi) are updated at each iteration to ensure 

that the best and worst outcomes change as the dragonflies move through the solution space. A new dragonfly 

might find a solution that is better than the current "food source" or worse than the current "enemy." Therefore, 

these locations must be updated at each iteration to ensure that the "food source" always represents the best 

solution found up to that point, and that the "enemy" always represents the worst solution. To guide movement, 

the location of the "food source" is used to attract other dragonflies toward it (foraging behavior), and the 

location of the "enemy" is used to repel other dragonflies (enemy avoidance behavior). Updating these locations 

ensures that movement is based on the latest information about promising and unpromising regions in the 

solution space. 

For F – Update the behavior parameters, w: inertia weight, s: separation weight, a: orientation weight, c: 

cohesion weight, f: food attraction weight, e: enemy repulsion weight. Determine how dragonflies move and 

interact. The influence of these parameters’ changes during the search between the exploration and exploitation 

phases. In the FM, the behavior parameters may be different. 

For G – Update neighboring radius, to adjust the range of influence dragonflies have on each other, i.e., a 

dynamic mechanism in the dragonfly algorithm during the search process, aiming to achieve an effective 

balance between exploring the solution space and exploiting promising regions. 

For H – Update velocity vector, to update the speed: If the dragonfly has neighbors, we use the following 

equation: 

V,j(t+1)=w V,j(t)+s S+a A+c C +f F + e E         …(17) 

If the dragonfly has no neighbors:  

Pj(t+1)=Pj,(t)+rand⋅L1     …(19) 

The dragonfly moves randomly to explore new regions in the solution space. Rand is a random number between 

0 and 1 (or a vector of random numbers in each dimension), and L1 is the length of the random step. 

Where: 

S: The separation to static collision avoidance of the individuals from other individuals in the neighborhood, 

and is calculated as:  

𝑆 = ∑ (𝑃𝑗 − 𝑃𝑙) ∗ 𝑒‖𝑃𝑗−𝑃𝑙‖𝑛
𝑙=1         …(12) 

Where 𝑃𝑗 is the position of the current individual, 𝑃𝑙 shows the position l-th neighboring individual. 

A (Alignment): The velocity matching of individuals to other individuals in the neighborhood is calculated as: 

𝐴 =
∑ 𝑉𝑙

𝑛
𝑙=1

𝑛
         …(13) 

Where 𝑉𝑙  shows the velocity of the l-th neighbouring individual. 

C(Pj ) (Cohesion): the tendency of individuals towards the center of the mass of the neighborhood  

𝐶 =
∑ 𝑃𝑙

𝑛
𝑙=1

𝑛
− 𝑃𝑗     …  (14) 
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𝐹(𝑃𝑗): Attraction to food calculated as: 

𝐹 = 𝐹𝑜𝑜𝑑 𝑃𝑡 − 𝑃𝑗            …(15) 

Here 𝑃𝑗is the position of the current individual, and 𝐹𝑜𝑜𝑑 𝑃𝑖 shows the position of the food source. 

𝐸𝑃𝑗 Distraction outwards an enemy is calculated as follows: 

𝐸 = Enemy𝑃𝑡 + 𝑃𝑗             …(16) 

where 𝑃𝑗 is the position of the current individual, and Enemy𝑃𝑡 shows the position of the enemy. 

I – Updating the position vector. 

P,j(t+1)=Pj(t)+V,j (t+1)      …(18) 

J – Check and correct the bounds are employed to obtain beta time varying estimates: 𝛽̂𝑖,𝑡 = 𝐹𝑜𝑜𝑑 𝑃𝑖,𝑡   , , 𝛾𝑆 =

𝐹𝑜𝑜𝑑 𝑃𝑆  based on estimated beta as independent variable.  

To improve the performance of the dragonfly algorithm (DA) in estimating the parameters of the Fama-MacBeth 

model, this research explores and compares three different strategies for tuning the algorithm's basic behavioral 

parameters: manual tuning, adaptive performance-based tuning, and adaptive tuning according to the 

methodology of [20]. 

1. Manual parameter tuning (MPT) 

In this approach, there were fixed values assigned for the parameters s, a, c, f, e, and w. These were based on 

the initial experiments and experience about how the algorithm was acting in relation to the problem to be 

solved. Then, the best set that provides the most optimal performance is chosen based on some parameters, e.g., 

solution precision and convergence rate. 

2. Adaptive tuning 

An adaptive parameter tuning mechanism was introduced based on [20] (YTA). In this introduction, the value 

of the enemy repulsion coefficient (e) was computed dynamically according to the following equation 

𝑒 = 0.1 − 𝑖 (
0.1

(
𝐼
2)

)        … (19) 

𝑤 = 0.9 − 𝑖 (
0.9 − 0.4

𝐼
)        … (20) 

Where: 

i is the current iteration and  

I is the number of iterations, where s, a, and c are three different random numbers between 0 and 2e, f is a 

random number between 0 and 2, and w is calculated in Equation 20. 

This paper proposes an adaptive tuning (APT) approach for the dragonfly algorithm's parameters. This method 

is based on evaluating the algorithm's efficiency during the search process. This modification seeks to achieve 

three main goals: improving the algorithm's flexibility to adapt to the nature of the problem, accelerating the 

convergence process toward the optimal solution, and improving the quality of the final solutions. The parameter 

values (w, s, a, c, f, e) are continuously updated as the number of iterations progresses. Instead of relying on 

fixed magnitudes, these magnitudes are dynamically adjusted at each iteration (iter) using the swarm's position 

or its search progress, using the following formulas: 

𝑃 = (max 𝑖𝑡𝑒𝑟𝑖𝑡𝑒𝑟) ∗ (min 𝑝 − max 𝑝) + max  𝑝       … (21) 
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Where: 

 p stands for a value for a parameter to be updated. 

 iter is the current iteration number in the optimization process. 

 max iter is the maximum number of iterations specified to terminate the optimization process. 

 min p is the minimum value that parameter p can reach at the end of the optimization process. 

 max p is the maximum value that parameter p starts with at the beginning of the optimization process. 

4. Results and discussion 

This research evaluates asset returns on the Iraq Stock Exchange using the Fama-MacBeth and Fama-French 

three-factor models. The model utilizes the market return index, book-to-market value, and firm size to assess 

asset risk. The model was applied to 22 listed companies using quarterly data from the first quarter of 2010 to 

the first quarter of 2024. Missing values were estimated using the KNN method, depending on the number of 

neighbors. 

To estimate the parameters of the Fama-MacBeth model, the fruit fly (FOA) and dragonfly (DA) algorithms 

were applied. The maximum number of iterations was set at 1,000, and the swarm size for both algorithms was 

set to 50 individuals. Given the nature and volatility of financial data, the initial positions of individuals in both 

algorithms were randomly initialized within the range [-10, 10]. 

For the dragonfly algorithm, the optimization process required fine-tuning the basic behavioural parameters 

following the methodology described in [20], which is (ATY). Additionally, two tuning strategies were 

explored: adaptive tuning (APT) and manual tuning (MPT). Experiments showed that manual parameter tuning 

provided the best results in the context of this study. The optimal values achieved for manual tuning were: s = 

0.01, a = 0.1, c = 0.1, f = 0.5, and e = 0.1. The inertia weight (w) was linearly decreasing from 0.9 to 0.2 over 

the iterations to achieve a balance between exploration and exploitation in the search space. The proposed 

methods, DA with three methods to select parameters of DA and FOA (swarm size =50,  iter=1000,  bound=rand 

value). 

In the first step of the Fama-MacBeth approach, we used time-series regression with a rolling window regression 

approach to estimate time-varying beta for each dependent variable. And in the Second step, we represented 

cross-sectional regression to estimate gamma based on time-varying beta as independent variables from the first 

step of FM We find the RMSE for each cross-section as shown in Table 1. 

Table 1. RMSE of the Fama-Macbeth model 

Date FMDA(MPT) 
FMDA 

(ATY) 
FMDA(APT) 

FM-

FOA 
KWR FMDA(APT) DAKWR(MPT) FOAKWR 

12/01/2014 0.18500 0.37928 0.18586 0.19653 0.20141 0.18655 0.18554 0.19347 

03/01/2015 0.07391 0.39187 0.07817 0.10450 0.12819 0.07488 0.07335 0.09055 

06/01/2015 0.21450 0.28158 0.21635 0.22215 0.25252 0.21518 0.21392 0.23427 

09/01/2015 0.12012 0.26568 0.12332 0.14649 0.12285 0.12147 0.12017 0.12180 

12/01/2015 0.16004 0.24009 0.16003 0.16651 0.17713 0.16100 0.16039 0.15802 

03/01/2016 0.12119 0.32506 0.12172 0.13841 0.16687 0.12016 0.11989 0.13969 

06/01/2016 0.11791 0.43175 0.11649 0.13328 0.18788 0.12118 0.11775 0.12343 

09/01/2016 0.13468 0.26774 0.13680 0.15501 0.14509 0.13561 0.13414 0.13784 

12/01/2016 0.12560 0.30263 0.12482 0.14176 0.18530 0.13086 0.12271 0.12699 

03/01/2017 0.13175 0.38456 0.13451 0.16160 0.15056 0.13338 0.13205 0.14089 

06/01/2017 0.10348 0.37520 0.10674 0.11324 0.15369 0.10957 0.10421 0.11429 

09/01/2017 0.22685 0.34338 0.22691 0.23179 0.24716 0.22716 0.22693 0.22988 
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Date FMDA(MPT) 
FMDA 

(ATY) 
FMDA(APT) 

FM-

FOA 
KWR FMDA(APT) DAKWR(MPT) FOAKWR 

12/01/2017 0.11783 0.27169 0.11757 0.14790 0.11945 0.11821 0.11702 0.11822 

03/01/2018 0.16296 0.38514 0.16272 0.16956 0.26504 0.16494 0.16161 0.16216 

06/01/2018 0.15882 0.28196 0.16102 0.17094 0.17014 0.16077 0.15910 0.16203 

09/01/2018 0.13762 0.17841 0.13729 0.14761 0.14880 0.13911 0.13749 0.13960 

12/01/2018 0.13614 0.39372 0.13618 0.14478 0.13946 0.13762 0.13619 0.13799 

03/01/2019 0.19803 0.32817 0.19892 0.20699 0.22658 0.19992 0.19815 0.20224 

06/01/2019 0.14497 0.40304 0.14587 0.15539 0.15457 0.14602 0.14522 0.14685 

09/01/2019 0.18386 0.17915 0.18447 0.20275 0.18368 0.18392 0.18337 0.18783 

12/01/2019 0.09313 0.20769 0.09572 0.09655 0.14102 0.09843 0.09321 0.12007 

03/01/2020 0.11423 0.22612 0.11550 0.12167 0.15547 0.11596 0.11431 0.12351 

06/01/2020 0.09181 0.31148 0.09220 0.09729 0.09506 0.09267 0.09191 0.09268 

09/01/2020 0.15072 0.25987 0.15019 0.17113 0.23428 0.15194 0.14972 0.15860 

12/01/2020 0.12118 0.25708 0.12241 0.13966 0.13043 0.12343 0.12141 0.12395 

03/01/2021 0.10565 0.34082 0.11012 0.10988 0.48627 0.10923 0.10720 0.11525 

06/01/2021 0.23294 0.33334 0.23359 0.23338 0.23921 0.23278 0.23293 0.23279 

09/01/2021 0.11249 0.33390 0.11403 0.13387 0.11303 0.11430 0.11267 0.11407 

12/01/2021 0.23686 0.48998 0.24561 0.24948 0.48571 0.24363 0.23650 0.26034 

03/01/2022 0.19596 0.43952 0.19930 0.19819 0.23872 0.19442 0.19732 0.21134 

06/01/2022 0.20894 0.32270 0.21179 0.21596 0.22135 0.21019 0.20892 0.20877 

09/01/2022 0.28284 0.38978 0.28078 0.28633 0.33219 0.28476 0.28269 0.29212 

12/01/2022 0.14009 0.41177 0.14333 0.15241 0.23017 0.14245 0.13999 0.16705 

03/01/2023 0.24120 0.33741 0.24394 0.25074 0.27573 0.24043 0.24005 0.24559 

06/01/2023 0.15324 0.54264 0.15940 0.17737 2.51627 0.15236 0.15418 0.17191 

09/01/2023 0.17886 0.38206 0.17918 0.19904 0.27565 0.18448 0.18181 0.20502 

12/01/2023 0.15612 0.41927 0.15775 0.17410 0.15655 0.15592 0.15583 0.15565 

03/01/2024 0.17195 0.43517 0.17654 0.18821 0.19365 0.17507 0.17188 0.18242 

Average 

RMSE 
0.155323 0.33818 0.15808 0.16980 

0.26440 

 
0.15816 0.15636 0.16445 

Table 1 compares the performance of eight different data interpretation methods, based on the root mean square 

error (RMSE) measure. The results clearly show that the DA (MPT) method performed best across all studied 

assets and for all cross-sections, recording the lowest RMSE values compared to the other methods. This 

indicates that DA (MPT) was the most capable of providing accurate and reliable interpretations of the data. 

However, DA (ATY) was weak and possessed the highest RMSE values. That is to say that this algorithm was 

the least capable of reading the data, and the prediction made by it was far from the actual values. DA (APT) 

performed immensely well, and its performance was nearest to that of DA (MPT). That means that DA (APT) 

is a viable substitute that can come up with good interpretations of the data. The fruit fly algorithm (FOA) 

outperformed the KWR and DA (ATY) algorithms in data estimation with low values of RMSE. Moreover, 

Tables 1 and 2 indicate how the results of the KWR algorithm were enhanced upon being optimized through 

the dragonfly and fruit fly algorithms. This enhanced the KWR estimate by yielding lower RMSE values 

compared to using the KWR values in isolation, thus affirming the optimization's ability to increase the accuracy 

of the estimates. 

Figure 1 shows the development of the proposed DA (MPT)'s objective function over iterations when it is used 

for estimating the coefficients of Fama-MacBeth regression models. An effort is made to comprehend the 

behavior of the algorithm and the convergence towards the optimal solution.  
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Figure 1. Evolution of the objective function of the DA (MPT) for the Fama-MacBeth model across iterations 

Figure 1 illustrates the convergence path of the dragonfly algorithm toward the optimal solution for parameter 

estimation in the Fama-MacBeth regression model across all given cross-sections. In each subplot, it is evident 

that the value of the objective function starts at a high level during the initial iterations and progressively 

decreases as the algorithm explores the solution space. This behavior clearly demonstrates the dragonfly 

algorithm’s capability to efficiently navigate the search space and converge toward regions that minimize the 

model's error. 

The steady decline in the objective function value across iterations highlights the effectiveness of the algorithm’s 

optimization process in identifying parameter sets that best fit the data for each cross-section. Furthermore, this 

approach can be extended and enhanced using linear and non-linear techniques [21], as well as through 

integration with fractal-based methods [22, 23]. 

5. Conclusion 

The findings of this research, whose purpose was to enhance the Fama-MacBeth model estimates by the 

dragonfly and fruit fly algorithms, showed a distinct superiority of the dragonfly algorithm compared to the fruit 

fly algorithm in approximation estimation. Apart from this, the research also proved that parameter tuning of 
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the dragonfly algorithm via adaptive tuning, especially the suggested performance-based tuning (APT) 

mechanism, was equal in efficiency with manual tuning (MPT) in generating results that were very close to one 

another. Finally, the outcome confirmed the positive impact of both dragonfly and fruit fly algorithms on 

enhancing kernel weighted regression (KWR) method estimates, and the dragonfly algorithm (APT, MPT) 

surpassed it in this regard as well. These findings demonstrate the capability of using intelligent optimization 

algorithms, the dragonfly algorithm in this instance, with suitable tuning systems for the parameters in order to 

achieve improved and more reliable estimates for sophisticated financial models within developing markets . 
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