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Abstract 

Modern distributed artificial intelligence (AI) systems utilize a significant number 

of virtual agents that must work collaboratively to solve complex tasks. However, 

existing technologies for organizing their interaction are characterized by certain 

shortcomings: high computational complexity, simplified operating conditions, 

poor adaptability to changes, and significant problems in accounting for the 

diversity of virtual agents and their emotional reactions during decision-making. 

The purpose of the study is to develop a new approach for organizing virtual agent 

operations in distributed AI systems that aims to improve their cooperation, 

coordination efficiency, and adaptability. The methodological foundation of the 

study was an innovative approach that combined a specialized emotion model 

containing 100 virtual agents in a two-dimensional space with a complex network 

of connections between them, with machine learning methods to enhance virtual 

agent coordination. Computer modeling methods were applied using experiments 

in the Python programming environment. The research results demonstrate that 

effective communication methods between virtual agents significantly improve 

their coordination, and conflicts during task execution are substantially reduced 

through adaptive mechanisms. The innovative emotion model can achieve high 

accuracy levels and contribute to the formation of new system behavior that 

includes sharp changes in collective decision-making processes. It also identifies 

essential parameters of virtual agent cooperation to ensure stable system operation. 

The comprehensive approach based on combining rule-based logic with machine 

learning can effectively improve virtual agent coordination, especially under 

conditions of their diversity. The AI system demonstrates real capacity for large-

scale changes, but is imperfect in reflecting negative emotional states. Such AI 

system research results are essential for developing autonomous systems, 

intelligent networks, and collaboration platforms for virtual agents. 

© The Author 2025. 

Published by ARDA. 

Keywords: Virtual agents, Behavioral coordination, Emotional modeling, 

Machine learning, Distributed computing, Adaptability, Collective behavior 

https://creativecommons.org/licenses/by/4.0/
mailto:oleksandrpankratov40@gmail.com


 SEI Vol. 7, No. 2, 2025, pp.327-344 

 

328 

1. Introduction 

A characteristic contemporary feature of digital transformation is the rapid development of distributed artificial 

intelligence (AI) technologies, which form the foundation for designing and implementing a new generation of 

intelligent systems. Distributed AI (DAI) systems are complex computational architectures in which numerous 

virtual agents operate in decentralized environments to achieve collective and individual objectives. DAI 

systems are designed for widespread application, primarily in critical domains such as smart grid management, 

unmanned aerial vehicle coordination, logistics network optimization, and smart city infrastructure operations. 

Within multi-agent systems [1], virtual agents are intelligent actors capable of autonomous decision-making, 

adaptive learning, and effective communication. Each agent possesses an individual knowledge base, 

computational resources, and specific behavioral algorithms, enabling the AI system to demonstrate emergent 

intelligent behavior that significantly surpasses the capabilities of individual system components. Virtual agent 

interaction ensures seamless AI system operation, efficient resource allocation, coordinated task planning, and 

global optimization across various dynamic environments. 

However, modeling virtual agent interaction in distributed AI systems encounters fundamental challenges. First, 

ensuring effective coordination is complicated by agent heterogeneity, as distinct communication protocols, 

decision-making algorithms, and computational resource levels characterize different agents. Second, large-

scale AI systems face virtual agent synchronization problems, where communication delays and asynchronous 

operations provoke conflicts and inconsistent virtual agent actions. Third, a critical limitation of AI systems 

remains their scalability, which is associated with increasing agent numbers that gradually and intensively 

elevate the coordination complexity of the AI system and its computational requirements. 

Analysis of scientific research indicates significant limitations in modern methods of modeling virtual agent 

interaction. Despite certain "mathematical elegance", developed game-theoretic models are often based on 

simplified assumptions about virtual agents' ideal awareness and rationality, which do not correspond to real 

operating conditions. Developed swarm intelligence technologies demonstrate effectiveness primarily in 

homogeneous systems but are unacceptable for modeling heterogeneous virtual agent communities. Given their 

adaptive capabilities, multi-agent reinforcement learning methods still have problems with computational 

complexity and scalability when working with large systems. 

The scientific novelty of the study lies in developing and implementing complex models that can simultaneously 

consider the emotional and cognitive aspects of the interaction of virtual agents, ensure their adaptability to 

dynamic changes in the environment and demonstrate scalability for practical use. Existing scientific research 

is mainly devoted to individual aspects of virtual agent interaction, but it is essential to form a holistic approach 

to modeling complex multi-agent systems. 

An essential scientific contribution of this study is developing an innovative platform that integrates a quantum-

inspired two-level system for modeling virtual agent emotional states with adaptive Q-learning algorithms. The 

proposed approach combines for the first time the theoretical principles of quantum mechanics with practical 

machine learning methods to create a realistic model of virtual agent interaction that accounts for both rational 

and emotional components of virtual agent behavior. The objective is to develop a new approach for organizing 

virtual agent operations in distributed artificial intelligence systems, involving improved cooperation, 

coordination efficiency, and adaptability to new conditions. 

To achieve the objective, the main tasks were formulated: 

– to determine specific agent interaction mechanisms that ensure optimal performance and stability of 

functioning in distributed intelligent systems under different topological network configurations [2]; 

– to study the mechanisms of coordination efficiency changes and overall DAI system performance when 

scaling from small to large virtual agent populations and factors that determine critical performance 

degradation points;  
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– to determine specific virtual agent parameters (their communication speed, decision-making algorithm 

complexity, computing power, and emotional characteristics) that have the most significant impact on 

overall DAI system performance and stability; 

– to determine the proposed DAI model's ability to demonstrate effective adaptability to dynamic 

operating environment changes (such as integrating new agents, modifying task structure, changing 

network topology, and variations in resource availability). 

Solving these tasks aims not only to ensure the effectiveness of the proposed approach but also to form 

scientifically based recommendations for the practical application of the developed methods in real DAI systems. 

1.1. Literature review 

Modern research on virtual agent interaction in distributed AI systems covers various methodological 

approaches, each highlighting individual aspects of autonomous entity coordination and cooperation. 

Game-theoretic analysis methods are fundamental for studying strategic interactions between virtual agents. 

Q. Yang et al. [3] identified approaches for studying equilibrium states in distributed computing environments. 

However, classical game theory application is limited by assumptions of perfect information and environmental 

stationarity, which rarely correspond to real operating conditions of decentralized AI systems. L. Serena et al. 

[4] investigated temporal aspects of network dynamics that determine communication link evolution over time; 

however, most existing approaches are based on idealized assumptions about information transmission 

characteristics, without accounting for fundamental limitations and delays. Alternative approaches are based on 

collective behavior principles borrowed from natural systems. N. Yugan et al. [5] investigate swarm intelligence 

mechanisms as a basis for organizing virtual agent set interaction. This methodology effectively solves 

optimization problems, but its application is complicated by the need to account for heterogeneous virtual agent 

characteristics and their functional capability diversity. 

The reinforcement learning paradigm in multi-agent systems is presented by H. M. Aliaroodi et al. [6], who 

investigated possibilities for adaptive formation of virtual agent interaction strategies. Despite the 

methodology's potential for dynamic adaptation to changing conditions, its practical application is hampered by 

computational complexity problems, especially when scaling distributed AI systems. Structural analysis of 

network interactions, presented in K. Stanisławski's [7] work, focuses on communication network topological 

properties and their impact on distributed computing efficiency. Such studies emphasize the importance of 

architectural solutions for ensuring distributed AI system stability and productivity. Integration of emotional 

components through applying the virtual agent influence complex model to their modeling was investigated by 

R. Farhalla [8]. This research aspect has identified prospects for justifying and developing more realistic virtual 

agent interaction models, especially in AI systems that include the human factor. 

Analysis of existing research indicates fragmentation of virtual agent interaction modeling approaches. Some 

methodologies focus on specific problem aspects, ignoring the complex nature of heterogeneous agent 

interaction in dynamic network environments. This determines the need to develop integrated software 

solutions, simultaneously accounting for distributed artificial intelligence systems' structural, behavioral, and 

temporal characteristics. Particularly noteworthy is the lack of methodologies combining quantitative emotional 

state modeling approaches with adaptive machine learning algorithms. Such synthesis could create more flexible 

and realistic interaction models, especially for systems involving intensive interaction between artificial agents 

and human users. 

2. Research method 

A comprehensive methodology was developed based on agent modeling principles using simulation 

experiments to study virtual agent interaction dynamics. The proposed approach systematically assessed the AI 

system's functional characteristics, including its performance, scalability, and adaptability. The research strategy 

was based on developing an experimental environment in which autonomous virtual agents operate within the 
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distributed network infrastructure. The methodological approach involved ensuring research result 

reproducibility by using standardized procedures and documenting all basic algorithm modifications. 

The research conceptual principles are implemented using Multi-Agent System architecture, in which an 

individual set of functional properties and behavioral characteristics characterizes each autonomous entity. Such 

diversification reproduces the complexity that defines a proper distributed AI system. Computational resource 

parameters, communication process efficiency, and algorithmic competence in decision-making determine the 

functional characteristics of virtual agents. 

The distributed AI system structural organization provided for dividing virtual agents into two functional 

categories: "executive units", specializing in implementing specific tasks (information processing, resource 

management), and "coordination entities", which are responsible for inter-agent communication 

synchronization and action coordination procedures. Each "entity" should maintain a personalized database that 

is dynamically updated through interactive processes with other system participants. 

The virtual agent behavioral model is implemented through a combined decision-making mechanism integrating 

deterministic rules for standard operations with adaptive algorithms for dynamic scenarios. The adaptive 

component is based on Q-learning methodology, as described in [3], with parameter configuration: the learning 

coefficient is set at 0.1 and the discount factor at 0.9. These parameters ensure a balanced ratio between learning 

new strategies and applying accumulated experience.  

The communication infrastructure of the distributed AI system is organized according to peer-to-peer (P2P) 

network principles, which ensures its architectural scalability and significantly reduces the risks of centralized 

bottlenecks. Asynchronous message exchange is implemented through a dynamic graph structure, in which 

vertices represent agents, and edges reflect active communication channels. Simulation of real operating 

conditions incorporates data transmission delay information, characterized by an exponential distribution with 

the mathematical expectation of 0.5-time units [4]. Technical implementation of the simulation was performed 

on the Python platform version 3.11 using the specialized MESA framework. This toolkit selection is due to its 

high efficiency in modeling complex multi-agent environments and flexibility in organizing various network 

topologies, which corresponds to the current study specifics [1]. 

The experimental environment is structured as a two-dimensional grid of 100×100 units, which serves as a 

functional space that facilitates virtual agent activity. One hundred resource units, including computational 

power elements and information blocks, are randomly distributed across the grid. Virtual agent operational 

limitations are determined by two main parameters: maximum communication range, limited to a radius of 10 

units, and resource consumption rate at the level of 0.1 units per time step. 

The foundation for developing and implementing the communication network topological structure is the scale-

free Barabási-Albert model with an average connectivity degree of 4, which realistically reflects connection 

patterns characteristic of actual decentralized systems [2]. This architecture aims to provide central nodes with 

enhanced connectivity while maintaining the essence of the distributed system. The developed methodology 

was validated through a series of controlled experiments with various variations of key system parameters. 

Evaluation criteria included synchronization time characteristics, task completion success indicators, virtual 

agent emotional state stability, and their adaptation speed to environmental changes. Reliability and significance 

of the obtained results were ensured through their statistical processing using standard variance and correlation 

analysis methods. 

3. Results and discussion 

3.1. Distributed interaction system (DIS) model 

The development of distributed artificial intelligence technologies at the current stage presents new challenges 

for designing effective interaction systems for autonomous virtual agents. The progressive integration of AI 
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technologies into digital infrastructure necessitates a profound analysis of information exchange processes, 

action coordination, and decision-making mechanisms among virtual space components within decentralized 

networks. These virtual representatives, encompassing software modules and AI avatars, are pivotal in ensuring 

seamless communication, task delegation, and real-time operational responsiveness. 

Innovative virtual reality technologies and interactive platforms expand the possibilities for virtual agent 

interaction in remote environments [5], characterized by varying levels of autonomous functioning: from 

completely independent units to collaborative elements that augment human capabilities. Such activities 

typically occur within complex decentralized structures and require resolving trust relationship issues, conflict 

situations, and optimal resource utilization. 

The proposed DIS model is constructed upon architectural principles and behavioral algorithms of such network 

formations. The research focuses on two agent categories: Natural Intelligence Agents (NIA), representing human 

operators, and Artificial Intelligence Assistants (AIA), which perform the functions of digital representatives for 

indirect communication and collaboration. This approach facilitates the development of a theoretical foundation 

for designing robust decentralized AI applications, investigating agent functionality within complex avatar-avatar 

interaction networks, and promoting the evolution of next-generation intelligent systems. 

Figure 1 demonstrates the conceptual framework of the DIS paradigm examined in this study. The architectural 

distinction is based on the differentiation between two types of virtual agents: NIA, which symbolize human 

participants, and their corresponding AIA or digital avatars [6]. In this paradigm, each user (NIA) is assigned a 

separate digital assistant (AIA), thus becoming a node in the complex avatar-avatar communication network, as 

seen in Figure 1a. AIA can communicate and receive information from other avatars in this network, allowing 

indirect communication and interaction throughout the system. Human users are not directly interconnected. 

They interact only through their assigned AIA. This framework demonstrates a mediated communication 

paradigm, where digital agents act as intermediaries for all information exchanges. 

 

Figure 1. (a) Schematic representation of DIS, consisting of AIA-NIA pairs located at each of the N network 

nodes; (b) Illustration of one AIA-NIA pair 

Personal idea development in the DIS model is influenced by two main factors: interaction between each user 

and their digital avatar (AIA), and information available to users from other sources, characterized by input rate, 

represented as γ, ᵢ. Significantly, NIA users do not participate in direct dialogues or decision-making processes 

with each other. They can instead observe and react to public content, such as messages or announcements, 

distributed throughout the network, which may influence their cognitive and emotional states. The influence 

complex model interprets these mental processes, proposing a systematic representation of emotional reactions. 

Interaction between the avatar and its user is facilitated by avatar information transmission. Users then evaluate 

this information and respond in three ways: acceptance, rejection, or apathy. These responses are often presented 

as binary feedback (e.g., "like" or "dislike"), depending on whether information is perceived as relevant or trivial 
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accordingly (Figure 1b). Over time, avatars develop their own perspectives and behavioral tendencies through 

dynamic interactions with other avatars in the network. These AIA autonomously communicate information, 

creating a decentralized and adaptive framework that leads to emergent "collective intelligence". 

Recommendations or material that avatars provide to users embody these communal dynamics. 

Avatars function as information filters and amplifiers across networks, conversing with other avatars and their 

human users. Their primary goal is to improve user satisfaction by synchronizing information dissemination 

with user emotional needs and maintaining favorable emotional states. The following sections explore 

circumstances that contribute to this emotional optimization. 

A quantum-inspired framework for agent modeling is presented to study and imitate such behavior. This method 

correlates decision-making (DM) states with mental states encapsulating NIA emotional attributes. According 

to cognitive theories that classify fundamental human emotions into separate categories, these mental states are 

represented as pairs of opposing emotions (e.g., acceptance-disgust, joy-sadness, anger-fear, anticipation-

surprise), similar to binary spin states, commonly known in quantum mechanics as "spin up" and "spin down". 

The solid arrow in Figure 2b illustrates the user's mental state transition from ∣g⟩i to ∣e⟩i when receiving 

significant or stimulating information from their avatar. This change can be viewed as "excitation" of the user's 

cognitive state, provoked by resonant information with thematic or emotional content closely corresponding to 

the user's internal cognitive frequency. The resonance condition is determined by transition frequency ω₀, ᵢ = 

(Eₑ, ᵢ − E₉, ᵢ)/ℏ, requiring that the informative signal have energy ℏωᵢ ≈ ℏω₀, ᵢ, thus replicating resonant excitation 

as described in quantum mechanics. The dashed arrow in Figure 2b indicates a non-resonant absorption scenario 

when the user reacts emotionally, possibly surprised or confused, to information that contradicts their cognitive 

state. This interaction modifies the user's mental energy, characterized by detuning parameter Δᵢ = ωᵢ − ω₀, ᵢ, 

which measures deviation from optimal resonant frequency. 

Various NIA emotional states, shown as specific valence values in Figure 2a, correspond to the TS energy axis 

and are quantitatively articulated by their corresponding detuning values Δᵢ. This abstraction allows the model 

to accurately determine and quantify user emotion dynamics within DIS, using only two parameters per agent: 

characteristic frequency ω₀, ᵢ and detuning Δᵢ, which encapsulate the emotional impact of AIA interactions. This 

paradigm postulates that, on average, NIA predominantly demonstrates neutral or positively valent emotions. 

While this assumption may be valid in controlled digital environments, it isn't easy to generalize to all online 

communities. In modern social networks, people often react strongly to bad or alarming events, leading to 

emotional contagion and negative influence spread. As a result, internet platforms can transform into places 

where intense emotions, such as anger, envy, and hostility, are often expressed. This complexity emphasizes 

the need for models that include positive and negative emotional dynamics within the DIS framework. 

User emotional state identification and categorization, specifically for the i-th user, where i = 1, ..., N, are 

conducted using the influence complex model, which outlines emotional experiences in two dimensions: 

valence (from positive to negative) and arousal (from low to high intensity) [7], [8]. This model is shown in 

Figure 2a. The complex model, first proposed by Russell, provides a practical and theoretically driven 

framework. Still, it is not widely accepted in cognitive sciences and is a subject of continuous debate [9]. It is 

particularly suitable for human-computer interaction applications and has been widely used in related technical 

research [10], [11]. Alternatively, emotional states can be shown on the Bloch sphere, a standard tool in quantum 

mechanics that offers a geometric representation of spin-like (emotional) states. This can be particularly useful 

when using emotion theories like Plutchik's model [12]. Nevertheless, as seen in Figure 2b, Russell's model 

precisely represents dynamic interactions between digital agents and various information fields within DIS. This 

study adopts Russell's model for its effectiveness in simulating emotional dynamics of user-avatar interactions 

in a cognitively and computationally efficient manner. 

In the DIS context, NIA are defined as "social atoms" [13], constituting fundamental system components, as 

seen in Figure 2b. For modeling purposes, two central mental states are chosen, denoted as ∣g⟩i and ∣e⟩I, from 
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the lower and upper hemispheres of the emotional complex model (Figure 2a), representing negative and 

positive arousal levels, respectively. These states denote mutually incompatible cognitive reactions or choice 

outcomes, denoted Sg and Se, which may indicate user position or recommendations provided by their digital 

avatar. This binary distinction establishes an effective cognitive two-level system (TS) for each NIA, 

comparable to quantum-mechanical models depicting discrete energy systems. In this formulation, states ∣g⟩i 

and ∣e⟩i receive social energy values Eg, i and Ee, i, with (Ee, i > Eg, i), explicitly paralleling energy levels in 

quantum theory. Additional emotional states, associated with intermediate social energies, are shown by 

horizontal lines in Figure 2b, with their positioning corresponding to places on the complex circle in Figure 2a. 

Dashed lines signify non-resonant absorption situations in which the user has an emotional reaction, potentially 

surprise or confusion, to information that does not match their cognitive state. This interaction transforms the user's 

mental energy, defined by detuning parameter Δi=Ωi−Ω0, i, which quantitatively assesses divergence from ideal 

resonant frequency. Various NIA emotional states, shown as separate valence values in Figure 2a, are aligned with 

the TS energy axis and quantitatively expressed through their corresponding detuning values Δi. 

Figure 2b depicts the user's mental state transformation from ∣g⟩i to ∣e⟩i when receiving significant or engaging 

information from their avatar. This change can be viewed as "excitation" of the user's cognitive state, induced 

by resonant information, information whose thematic or emotional content closely corresponds to the user's 

internal cognitive frequency. The resonance condition is characterized by transition frequency Ω0, i= (Ee, i − 

Eg, i)/ℏ, requiring that the information signal have energy ℏΩi≈ℏΩ0, i, thus emulating resonant excitation as 

outlined in quantum mechanics [14]. 

This abstraction allows the model to accurately outline and quantify user emotion dynamics within DIS, using 

only two parameters per agent: characteristic frequency Ω0, i and detuning Δi, which contain the emotional 

impact of AIA interactions. This model assumes that NIA predominantly reflects neutral or positively valent 

emotions on average. While this assumption may be fair in regulated digital settings, it isn't easy to extrapolate 

to all online groups. In real social networks, participants react intensively to adverse or disturbing events, leading 

to emotional contagion and bad influence spread [15]. Therefore, online platforms may evolve into arenas where 

deep emotions, such as anger, jealousy, and hatred, are often articulated [16]. This complexity emphasizes the 

need for models integrating positive and negative emotional dynamics within the DIS framework. 

 

Figure 2. Mapping (a) Russell's influence complex model to (b) quantum-inspired TS representation for the i-

th Natural Intelligence Agent 

An extensive series of agent simulations was conducted using the MESA framework in Python for thorough 

DIS model evaluation. The MESA framework was chosen for its flexibility in modeling multi-agent systems, 

allowing detailed representations of agent interactions, network topologies, and dynamic environments. 

Simulations aimed to assess DIS model effectiveness under multiple conditions, emphasizing its efficiency, 

scalability, and adaptability in handling complex interactions among various participants. 
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The experimental setup had 100 agents, including 80 task agents for task execution and 20 coordinator agents 

for resource distribution and conflict resolution. Agents operated within a two-dimensional 100x100 unit grid, 

representing a spatial environment where proximity influenced communication and interaction dynamics. Agent 

connectivity was established by a scale-free Barabási-Albert network, characterized by average degree 4 

(parameter m=2), simulating fundamental network properties where several nodes function as significant hubs, 

while many others have modest connections. This network architecture was chosen to assess the impact of 

preferential attachment and hub-centric connectivity on overall system performance. 

Simulations investigated four main DIS model dimensions: 1) coordination efficiency, assessing speed and 

accuracy of resource distribution among agents; 2) emotional state transitions, analyzing NIA emotional 

response dynamics through the quantum-inspired framework; 3) scalability, evaluating performance with 

increasing agent populations; 4) adaptability, assessing system response to sudden environmental changes. 

Performance evaluation was conducted using various metrics, including synchronization time (duration required 

for coordinated resource allocation), task completion rate (percentage of completed tasks), emotional state 

stability (reliability of NIA emotional states), and adaptation delay (response time to environmental changes). 

The metrics above were investigated under multiple configurations to ensure the results' reliability and 

generalizability. 

3.2. Coordination efficiency analysis 

In the first stage of experimental research, an analysis of coordination efficiency was conducted under conditions 

of both typical and heterogeneous functioning of virtual agents, which under standard conditions interacted within 

a communication radius of 10 units, consumed resources at a rate of 0.1 units per time step, and were characterized 

by exponential distribution of communication delays with a mean value of 0.5-time units. 

Coordination efficiency was determined through the average duration required for synchronized resource 

distribution among all system components. This indicator is essential for decentralized architectures [17], [18]. 

Through conducting 50 simulation experiments, the average synchronization time was determined to be 12.3 ± 

2.1-time units, which indicated stable and effective coordination of system components. 

Variability was incorporated into two key parameters to study the impact of virtual agent heterogeneity. The 

first was communication speed, and the second was computational power. Communication speed varied with a 

standard deviation of ±20% from the baseline value, which reproduced real conditions where different virtual 

agents have unequal communication delays due to hardware limitations or network issues. Variability led to 

increased synchronization time to 14.2 ± 2.5-time units, signifying statistically significant coordination 

efficiency reduction of 15.4% (p < 0.05, two-tailed t-test). Comparable difficulties in integrating diverse 

intelligent systems were observed in applications such as protective fabrics, where electronic tags enhance 

system efficiency [19]. 

Simultaneously, computational powers were adjusted using a uniform distribution from 0.8 to 1.2 units, 

signifying agent processing capabilities variations. This change reduced the completion rate from 92.3% ± 3.1% 

to 85.1% ± 4.0% (p < 0.01), emphasizing system susceptibility to fluctuations in agent competencies. Spearman 

correlation analysis between transmission speed variability and synchronization delay yielded a strong positive 

correlation coefficient of 0.78. This work demonstrates that increased uncertainty in transmission speed directly 

hinders cooperation, possibly through timing mismatches and uneven resource distribution [20]. 

To mitigate the adverse effects of agent heterogeneity, coordinator agents were equipped with a Q-learning 

algorithm (learning rate: 0.1; discount coefficient: 0.9), allowing them to improve resource distribution 

strategies adaptively. This adaptive mechanism reduced task conflicts by 32%, prioritizing agents with higher 

computational or communication efficiency. As a result, task completion rate in heterogeneous environments 

improved by 10%, emphasizing reinforcement learning's effectiveness in improving coordination under variable 
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conditions. Adaptive intelligent systems, such as those developed for individualized product manufacturing, use 

learning algorithms to improve performance in variable environments [21]. 

3.3. Emotional dynamics and quantum-inspired TS model 

Based on Russell's complex model, the DIS model includes a quantum-inspired TS for emulating NIA emotional 

dynamics in their interactions with AIA. The complex model categorizes emotions in a two-dimensional 

framework, characterized by arousal (intensity) and valence (pleasantness), providing a systematic 

representation of emotional states such as satisfaction, anger, surprise, and confusion. The TS framework uses 

quantum-like mechanisms to represent probabilistic shifts between emotional states [22], where resonant 

excitations (Δᵢ ≈ 0) denote congruence between AIA-generated recommendations and NIA preferences. At the 

same time, non-resonant absorptions (|Δᵢ| > 0.2) indicate emotional or cognitive dissonance. 

In simulated studies, resonant excitations were observed in 65.4% ± 5.2% of AIA-NIA interactions, leading to 

a recommendation acceptance rate of 78.2% ± 4.8%. This result illustrates the TS model's effectiveness in 

aligning AIA outputs with NIA emotional expectations, thus improving collaborative behavior. Conversely, 

non-resonant absorptions led to proposal rejection in 55.7% ± 6.1% of cases and emotional indifference in 

29.8% ± 5.5%. In these misaligned encounters, NIA predominantly demonstrated emotional reactions of 

surprise (20.1%) and confusion (9.7%), as shown on the complex plane. 

TS model performance was evaluated by comparing its conclusions with a traditional rule-based emotional 

model that used established thresholds for state transitions [23]. The TS model outperformed the baseline with 

21.3% improvement in predicting proposal acceptance, achieving an F1-score of 0.82, versus 0.68 for the rule-

based approach. This exceptional result emphasizes the TS model's ability to consider probabilistic and context-

dependent characteristics of emotional reactions, which are often oversimplified in deterministic models. 

Despite its advantages, the TS model had significant shortcomings in depicting negative valence emotions, such 

as anger and contempt, which comprised only 8.4% ± 2.3% of documented emotional states. Under-

representation may stem from binary characteristics of TS transition logic, which inadequately encapsulates 

emotional contagion dynamics observed in social networks. Under these conditions, emotional influence may 

spread indirectly through agent interactions, leading to group emotional state emergence [24]. 

To correct these shortcomings, further DIS model revisions could improve its effectiveness, including multi-

level emotional modeling approaches, such as graph-based diffusion processes that emulate emotion spread 

through networks. Expanding the TS framework to include temporal emotional aspects, such as memory effects 

or hysteresis, is expected to improve prediction accuracy in longitudinal simulations and enhance the realism of 

emotionally adaptive agent actions [25]. 

3.4. Scalability and network topology effects 

Scalability is vital in evaluating DIS model suitability for implementation in extensive, distributed settings. To 

assess this feature, the number of agents was gradually increased from 100 to 500 in steps of 100, maintaining 

the scale-free Barabási-Albert network architecture [26], [27]. With system growth, coordination efficiency 

demonstrated linear deterioration: synchronization time increased from 12.3 ± 2.1-time units with 100 agents to 

18.7 ± 3.4-time units with 500 agents, reflecting 52.0% growth (R² = 0.89). Performance decline was evident in 

task completion rates, which decreased from 92.3% ± 3.1% to 79.6% ± 5.2%, primarily due to increased 

communication delays and intensified resource competition. 

Hub nodes, characterized by degree 10 or higher and comprising approximately 12% of the network, were 

critical in mitigating these scaling problems. These nodes provided 61.8% ± 7.0% of successful 

synchronizations, serving as high-connectivity channels for information dissemination. Hub nodes had an 

average degree of 15.2 ± 3.8, serving as local coordinators and improving coordination dynamics throughout 

the network. Nevertheless, this dependence on hub nodes generated inherent trade-offs. Hub nodes became 
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performance bottlenecks under elevated load conditions (degree >20), leading to a 22.4% increase in local 

communication delays. 

Figure 3 illustrates this effect, depicting synchronization time as a function of node degree and demonstrating a 

negative correlation (r = −0.65) between node degree and synchronization efficiency for hub nodes under low 

load conditions. Lightly loaded hubs improved system performance, but excessively overloaded hubs hindered 

coordination, emphasizing the need for effective load control [28]. These findings emphasize the dual nature of 

scale-free topologies: while their hubs enable efficient coordination under moderate circumstances, they also 

represent vulnerability points under high demand. 

To mitigate this shortcoming, further DIS model improvements may include dynamic load balancing solutions, 

such as graph partitioning algorithms or decentralized consensus processes, for more equitable distribution of 

computational and communication loads across the network. Other network configurations, such as small-world 

graphs or random Erdős-Rényi graphs [29], should be investigated to assess their potential in improving system 

scalability and resilience in various application domains. 

 

Figure 3. Synchronization time as a function of node degree in Barabási-Albert network 

DIS model adaptability was evaluated by introducing dynamic environmental perturbations at simulation step 

100, simulating real situations requiring rapid system reconfiguration. Two simultaneous modifications were 

implemented: 20% network size expansion by adding 20 additional agents and 30% reduction in available 

resources from 100 to 70 units. These perturbations assessed the system's ability to maintain operational 

coherence and emotional stability under stress. 

To facilitate this transition, coordinator agents used a hybrid decision-making approach that combined rule-

based heuristics with Q-learning [30] (learning rate: 0.1, discount coefficient: 0.9), allowing adaptive task 

redistribution and strategic recommendation modifications. This reinforcement learning component enabled 

system adaptation within 14.8 ± 2.7-time steps, thus stabilizing NIA emotional reactions. After adaptation, the 

percentage of positively-valent emotional experiences increased notably from 49.7% ± 7.1% to 70.4% ± 6.3% 

(p < 0.001), indicating improved emotional congruence between AI-generated strategies and NIA preferences. 

Conflict resolution and resource efficiency have significantly improved. Coordinator agents reduced task 

conflict rates by 41.2% ± 5.9% through dynamic task reassignment, leading to a 15.6% improvement in overall 

resource distribution efficiency. Emotional state stability, assessed by variation in valence ratings, improved by 

28.3% after adaptation, thus confirming the effectiveness of the hybrid coordination method. 

Despite these improvements, a distinct limitation became evident: adaptation delay increased with network 

growth. In the most extensively studied configuration (500 agents), adaptation required 19.3 ± 3.2-time steps, 
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emphasizing increased coordination complexity inherent to larger systems. This finding indicates that while the 

DIS model can undergo adaptive reconfiguration, its responsiveness decreases with size increase [31]. To 

address this bottleneck, future improvements may include hierarchical coordination systems that distribute 

decision-making through multiple agent layers or utilize distributed reinforcement learning frameworks to 

parallelize adaptation among subgroups. 

Additionally, predictive modeling approaches may be used to anticipate environmental changes, allowing the 

system to adopt a more proactive rather than reactive approach [32]. These additions would increase the DIS 

model's ability to function effectively in extensive, dynamic, and unexpected situations. Table 1 summarizes 

performance metrics across simulation scenarios, providing a concise overview of DIS model behavior under 

different conditions. 

Table 1. DIS model performance metrics across simulation scenarios 

Scenario Agents Synchronization 

time, s 

Task completion, 

% 

Acceptance rate, 

% 

Adaptation delay, 

s 

Baseline 100 12.3 ± 2.1 92.3 ± 3.1 78.2 ± 4.8 - 

Heterogeneous 100 14.2 ± 2.5 85.1 ± 4.0 74.5 ± 5.3 - 

Scaled (500) 500 18.7 ± 3.4 79.6 ± 5.2 71.3 ± 6.0 - 

Dynamic change 120 13.8 ± 2.4 87.4 ± 4.5 70.4 ± 6.3 14.8 ± 2.7 

Simulation results confirm the DIS model's ability to depict complex agent interactions and emotional dynamics 

within decentralized multi-agent networks. The study outlines several key aspects affecting system performance. 

Variation in agent communicative and computational capabilities reduces coordination 

efficiency [33], [34], [35]. However, using adaptive mechanisms, especially those utilizing Q-learning, 

mitigates these inefficiencies through continuous improvement of work distribution and interaction methods. 

Using quantum-inspired TS, the model's depiction of emotional dynamics allows probabilistic changes in 

emotional states in response to AI-generated inputs. This paradigm effectively promotes positive emotional 

responses but fails to truly depict negative emotional states, emphasizing the need for more nuanced 

methodologies that include emotional contagion and temporal dynamics. 

Network topology is an essential element in coordination. The scale-free Barabási-Albert network facilitates 

communication through high-degree hubs, thus improving performance under moderate system loads. This 

structural dependence creates vulnerabilities in high-demand situations when communication bottlenecks may 

hinder synchronization. The DIS model further illustrates its resilience to environmental changes using hybrid 

decision-making methodologies. With increasing system size, adaptation delays become more significant, 

indicating that decentralized or hierarchical coordinating strategies may improve scalability. 

Results emphasize the DIS model's promise as a reliable foundation for developing intelligent multi-agent systems, 

especially in human-AI interaction domains, such as social robots, conversational agents, and distributed 

collaboration platforms. Its unique focus on integrating cognitive and emotional elements, facilitated by interaction 

between TS and Q-learning, distinguishes it from conventional models that neglect emotional factors. 

Nevertheless, several improvement opportunities remain. Enhancing emotional authenticity may require graph 

models of emotional diffusion with emotional memory [36]. Mitigating adaptation delays may require using 

decentralized learning or predictive coordination mechanisms. Investigating hybrid network topologies that 

integrate scale-free system efficiency with small-world structure reliability may improve performance. 

Moreover, validation against empirical datasets or physical agent realizations is critical for ensuring external 

validity [37], [38]. These guidelines indicate potential pathways for improving the DIS model into a more 

scalable, emotionally intelligent, and flexible solution for real-world, human-centered multi-agent systems. 
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This study presents a quantum-inspired framework for modeling DIS, consisting of two distinct but interacting 

agent categories: NIA, representing human users, and AIA, serving as their digital avatars (Figure 1). AIA 

function within a network known as the avatar-avatar network, consisting of N nodes and organized as an 

undirected graph defined by power-law degree distribution [39]. This topology indicates the existence of central 

hub nodes with significantly enhanced connectivity. 

We use Russell's emotional state complex model, characterized by valence and arousal, to represent cognitive 

processes in a simplified two-level quantum system. This representation facilitates the abstraction of NIA cognitive 

processes into a binary decision-making framework (Figure 2). Each NIA's cognitive or emotional state, shaped 

by external information, is measured by the average value of the inversion operator σi, which indicates the user's 

inclination toward information presented by their avatar [40]. In the range 0≤σi≤1, this measure accurately outlines 

the degree of cognitive arousal caused by the external "information pump" affecting the user. 

The spectrum of allowed excitation frequencies within DIS reflects the diversity of views articulated in the system. 

At each network node, user-avatar interactions generate an opinion split phenomenon, indicating the onset of 

opinion polarization. This division reflects dynamic changes in user emotional states and belief systems, with some 

views strengthening while others weakening. The article outlines specific criteria for clarifying processes behind 

these changes, focusing on the impact of avatar-avatar connectivity on network-level dynamics [41]. 

3.5. Emergent behavior and collective opinion formation 

The study's main finding is determining criteria that allow the emergence of a non-zero macroscopic coherent 

information field within DIS. This domain signifies a cohesive information structure that emerges when users 

achieve cognitive and emotional congruence with their digital avatars, especially when avatars satisfactorily 

fulfill user information needs and expectations. 

Under these circumstances, DIS's opinion formation and social influence mechanisms demonstrate 

characteristics of a second-order phase transition, similar to the social laser phenomenon observed in other 

complex social systems [42]. Conversely, the information field rapidly deteriorates without such alignment, 

indicating collective coherence collapse and the avatar's inability to achieve consensus on shared choices. In 

this framework, continuous adaptive learning between AIA and NIA becomes impossible. The study further 

demonstrates that collecting cooperativity parameters Ci, for i = 1, ..., N, is critical in determining DIS emergent 

features. These characteristics provide the necessary conditions for realizing the previously indicated phase 

transition. User cooperation within DIS is facilitated indirectly through their digital equivalents (AIA) [43], with 

each parameter Ci quantitatively assessing the coupling strength between specific NIA and its corresponding 

AIA, especially regarding frequency and intensity of their interactions. 

A generalized cooperativity parameter, Gi, was established to provide the requirement for initiating collective 

opinion formation and social influence. This extended parameter integrates NIA-AIA coupling strength and 

user cognitive/emotional state, as determined by the σi value. The study reveals that a collective phase shift to 

coherent opinion creation occurs when a significant proportion of avatar-user pairings meets the laser-like 

transition condition. In this setting, views associated with Im(ω) > 0 are predominantly amplified within DIS, 

while those associated with Im(ω) < 0 are not. This behavior dynamically correlates with creating and 

amplifying a socially relevant information field, thus enabling effective opinion dissemination and cohesive 

collective activity throughout DIS. 

The topological topology of the avatar network significantly influences opinion formation dynamics [44]. In 

scale-free networks, the system demonstrates emergent self-organization among avatars. Specific avatars 

demonstrate enhanced inter-avatar connectivity compared to their corresponding users in this regime. These 

interconnected avatars serve as the most powerful AIA within DIS. Through central positioning and enhanced 

connectivity, they can maintain and disseminate dominant narratives across the network, thus exerting 

significant influence on the system's information environment. 
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DIS becomes more susceptible to uncertainty when the coupling strength between AIA and NIA is weak (i.e., 

Ci ≤ 1). Under these circumstances, decision-making agents struggle to form stable or meaningful judgments. 

When system parameters drop below the critical threshold required for phase transition, the socially relevant 

information field [45], denoted as s-field, diminishes. This collapse indicates inadequate avatar adaptation, as AIA 

can no longer adequately respond to or learn from its users' cognitive and emotional conditions. 

The study emphasizes that structural attributes of the avatar-avatar network are particularly significant in the 

weak coupling regime. In complex, scale-free networks, avatars tend toward self-organization, influenced by 

the system's intrinsic topological characteristics. In certain arrangements, specific avatars establish inter-avatar 

relationships that significantly exceed the strength of their specific user-avatar connections. These avatars 

function as highly influential AIA, exercising significant power over information dissemination and 

organization within DIS. Through their key positioning and comprehensive connectivity, they can shape 

prevailing narratives and maintain their power even if their direct interaction with consumers weakens. An 

adaptive control method was developed to mitigate shortcomings of inadequate AIA-NIA connectivity. This 

approach amplifies user influence by adapting the coupling rate to network interdependencies. For specific user 

i, cooperativity parameter Ci can be adaptively increased by a factor proportional to node degree ki of the 

corresponding avatar within the avatar-avatar network. This method significantly improves congruence between 

consumers and their digital assistants, especially amid uncertainty or unpredictability in client preferences. 

This adaptive control method improves decision-making efficiency by increasing user input in structurally 

unfavorable settings [46], [47]. The strategy mitigates the destabilizing effects of inadequate cooperativity and 

promotes the establishment of stable and consistent beliefs. The proposed architecture offers a robust and 

scalable method for managing distributed AIA in complex network environments, ensuring consistent system 

performance despite suboptimal or irregular user-avatar interactions. Results of this study indicate favorable 

prospects for using AIA as effective collaborators in multiple application domains, especially in scenarios where 

human agents perform routine or decision-oriented tasks within interconnected settings. Particularly significant 

are structured network systems, prevalent in economics and finance (e.g., markets, stock exchanges) and in 

professional and organizational settings, such as office communication networks. The DIS framework 

established in this study provides a practical model for investigating decision-making processes in various 

domains. 

Additionally, the DIS framework can be thoroughly analyzed through the theoretical perspective of evolutionary 

game theory, especially in contexts where cooperative behavior among decision-making agents is central [48], 

[49]. Cooperativity characteristics presented here may work as a fundamental component for such studies, while 

their relevance will depend on specific interaction protocols and structural constraints of underlying networks. 

Furthermore, quantum probability theory significantly complements existing methodology, providing tools for 

modeling non-classical and sometimes irrational dimensions of agent behavior [50], [51]. This path remains 

accessible for future research and requires further study to assess its effectiveness in modeling decision-making 

processes under ambiguity and cognitive bias. 

Emotional and cognitive states of agents, especially in diverse or arbitrary networks, must be accurately 

described to encapsulate the full complexity of decision-making behavior. The existing framework uses 

Russell's influence complex model as the basis for its two-level cognitive representation (Figure 2). This reduced 

binary paradigm may inadequately represent the full spectrum of emotional experiences, especially those with 

negative valence. The work recognizes the need to expand this representation to include three- or four-level 

quantum-like cognitive systems. These advanced models would provide comprehensive mapping of mental 

states across all quadrants of Russell's emotional space (Figure 2a), thus enhancing behavioral simulation 

accuracy. These multi-level extensions may also include other psychological models, such as those proposed 

by Ekman and Plutchik, thus enhancing their relevance for future cognitive modeling initiatives. In quantum 

physics, multi-level systems are often studied to understand the coherent dynamics of atomic entities that 

interact simultaneously with different external fields [52]. Multi-level cognitive models effectively encapsulate 
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NIA's complex emotional and cognitive dimensions in DIS. The existing framework is based on Russell's 

influence complex model. However, there are significant opportunities to expand this representation to include 

alternative and well-established emotional taxonomies, such as those proposed by Ekman and Plutchik. 

Expanding the current two-level cognitive abstraction to a multi-level mental state model represents a promising 

but complex path for future research. Progress in this area may significantly enhance the accuracy and detail of 

emotional state modeling in AI-assisted decision-making contexts, while expanding the DIS framework's 

applicability in various practical spheres [53]. 

4. Conclusions 

This study presented a DIS model for simulating virtual agent interactions within distributed artificial 

intelligence environments. It integrates a quantum-inspired TS based on Russell's influence complex model with 

a Q-learning algorithm to provide adaptive coordination. The model integrates agent heterogeneity, network 

topology fluctuations, and evolving environmental variables, using agent simulations developed within the 

MESA framework.  

Based on the research findings, it has been revealed that the combined decision-making mechanism, which 

synthesizes rule-based logic with the Q-learning algorithm, significantly optimized coordination between virtual 

agents, dramatically reducing the number of conflict situations and increasing task completion performance 

indicators, particularly under conditions of virtual agent diversity. Despite the maintained scalability 

demonstrated by the system, a linear decline in coordination efficiency was observed with increasing numbers 

of system components. The central nodes of the Barabási-Albert architecture provided enhanced performance; 

however, under high loads, they simultaneously formed limiting factors. 

The research revealed the AI system's performance sensitivity to variations in virtual agent functional 

capabilities, specifically in data transmission speed characteristics and computational power. These differences 

were factors in prolonging synchronization periods and reducing task execution effectiveness. Despite the 

limitations above, the model demonstrated a high level of adaptability, with the system successfully responding 

to environmental modifications, such as network expansion and resource base reduction, which improved virtual 

agents' emotional state and reduced conflict situations. 

The scientific novelty of the conducted research lies in substantiating a unique simulation architecture that 

combines stochastic emotional modeling based on a quantum-inspired two-level system with adaptive learning 

through the Q-learning algorithm. This model is designed to address key challenges of virtual agent 

heterogeneity and ensure network adaptivity, revealing emergent behavior patterns that include laser-like phase 

transitions in collective opinion formation. The results aim to provide a fundamental understanding of scalable 

and flexible interactions in decentralized AI systems. 

Future research prospects lie in methodology verification for real-world applications, particularly social robotics 

and collaborative digital ecosystems. Enhancing the emotional architecture by implementing more sophisticated 

models or emotional diffusion mechanisms anticipates improved authenticity, especially under conditions of 

negative emotional dynamics. Applying innovative machine intelligence methods, such as distributed 

reinforcement learning or predictive adaptation, aims to minimize delays in large-scale AI systems. 

Investigating other network topologies, such as small-world or Erdős-Rényi graphs, may improve system 

scalability and reliability, thus contributing to broader DIS model use in complex distributed AI systems even 

in the fuzzy environment [54]. 
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