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Abstract 
The quick improvement of nanotechnology permits a wide range of utilization of 

engineered nanoparticles, such as personal care products, medicals, optics, 

electronics, and automobiles. The nanoparticles manufactured from Ag, Au 

carbon-nanotube, ZnO, SiO2, TiO2, Cu, Ni, and magnetic ferrites are among the 

generally utilized in products. The nanoparticles are produced and utilized in 

large quantities and release into marine and freshwater ecosystems during 

production, use, discharge, treatment, and deposition. Those particles with a mean 

size of 1 nm - 100 nm are of potential environmental risks because of their 

particular qualifications and high reactivity although their great economical 

values. Based on the studies, the size, shape, and surface physical and chemical 

characteristics of the nanoparticles show the level of aggregation, solubility, 

structural and chemical composition, the importance of the use of nanoparticles, 

and their toxicity with biological systems. Nanoparticles can potentially cause 

adverse impacts on tissue, cellular, genetic materials, and protein- enzyme levels 

due to their unique physical and chemical qualifications. In this study, the effects 

of nanoparticles on aquatic organisms and aquatic ecosystems were evaluated. 
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1. Introduction  

In the Anthropocene era, many products used in daily life, industry, medical products, personal care products 

and cosmetics contain nanoparticles or are made of nanomaterials. Natural, incidental or industrially produced 

unbound or agglomerated particle-containing materials with a ratio of about > 50% in the 1–100 nm size range 

are defined by the European Commission (2011/696/EU), as nanomaterials [1]. Today, nanotechnology is a 

rapidly developing interdisciplinary science that can be combined with engineering, biology, chemistry, 

physics and medicine [2-4]. The physico-chemical characteristics of the nanoparticles are quite different from 

in larger sizes and agglomerative form. The properties of nanoscale materials have made nanotechnology one 

of the most important technologies of the twenty-first century. Nanotechnology is now accepted to reaching a 

market value of 3 trillion dollars by 2020. Nowadays, more than 1800 nano-enabled products are available in 

the consumer market [3]. Nanoparticles (NPs) are produced and used in large quantities, and are freely 

released directly / indirectly into different water ecosystems during production, use, discharge, disposal, 

recycling. On the other words, NPs can enter aquatic ecosystems in different stages: throughout the time of the 

generation of raw materials and consumer products; throughout the time of the utilize of products containing 

NP and subsequently discharge [4,5]. Hence, NPs can impact freshwater and oceans, harms organisms in 

different aquatic food web levels. Nowadays, the damages of NPs are determined at the food web level. 

Algae, Daphnia, Artemia (zooplankton), Bivalvia (benthos) and fish represent over the aquatic organism in 
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quite different habitats, which make them convenient organisms and models for assessing the environmental 

impact of NPs [4,6,7]. NPs have critical for two main reasons; firstly, effects on the biochemical and 

physiological of organisms and secondly, effects on the ecosystem as freshwater and marine systems. The 

function and balance of the ecosystem is an ecological integrity that affects all living things and nanomaterial 

and NPs can harm the ecosystem. 

NPs carry potential risks to the ecosystem and human health with its wide applications in commercial and 

different industrial products. Potential toxicity and behavior of NPs can be affected by various factors such as 

particle charge, size, chemistry and reactivity, surface area, structure and shape, aggregation state and 

elemental composition.  

2. The structure of nanoparticles 

Nanoparticles are materials with unique structural properties depend on their size, and these properties make 

nanoparticles advantageous for industrial and medical use. The physical and chemical properties of the 

particles in the nanoscale are different from those in larger sizes. This is due to the fact that although the 

nanoscale particles consist of the same atoms as the macro-sized particles, their surface areas increase [5,7,8]. 

In addition to the size of the nanoparticles, properties such as shape, surface load, presence of other materials 

are among the factors that affect their behavior [4]. Nanoparticles can be classified in different subgroups: 

Natural, incidental and engineered nanomaterials. The natural nanomaterials are present in ecosystems such as 

virus and viral capsids. Incidental nanomaterials are accepted as a by-product of various mechanical or 

industrial processes and reason environmental pollution such as vehicle exhausts and combustion processes. 

Nanomaterials that are produced and intentionally engineered to have specifically required characteristics are 

called engineered nanomaterials [7, 9]. 

Nanoparticles with different properties are collected in two groups as organic NPs (also, metal NPs with an 

organic coating) and inorganic NPs (also, metal and metal oxide NPs) [6]. The inorganic NPs are accepted to 

be good materials in some industrial areas such as food, cosmetics and the medical industry (drug delivery and 

diagnostic imaging) and the advancement of new electronic instruments [6, 10]. Organic NPs consisting of 

organic compounds (lipids, polymer, carbohydrate, DNA, RNA, proteins and dendrimers) have larger sizes 

than inorganic NPs. The size of organic particles has a decisive point in their implementations in many areas 

such as electronics, medicine and environmental science [6, 10]. 

It is known that NPs are released easily into all kinds of ecosystems. On the other hand, especially, the 

behavior of NPs differs due to their characteristics in the aquatic ecosystems. The chemical composition of 

water, salinity, organic salts, total suspended solid matter, water circulation patterns and movements in the 

lake or marine ecosystem [11]. Agglomeration, aggregation and precipitation of NPs are affected by water 

quality.  Based on the studies, the size, shape and surface chemistry or physicochemical properties of the 

nanoparticles show the level of aggregation, solubility, structural and chemical composition, the importance of 

the use of NPs and their toxicity with biological systems [10-14]. The size of nanoparticles is a crucial factor 

in determining their toxicity. NPs size and shape have a direct impact on metabolism. It easily enters the body 

during respiratory and nutrition and causes significant accumulation in the digestive system. Thence, it plays 

an important role in the endocytic cellular uptake and biochemical physiological pathways and response of 

NPs. 

As stated above, the shape of NPs is an important feature in the toxicity of NPs, as they can be taken into the 

cell more easily. Lekamge et al. [4] and Truong et al. [15] indicated that non-spherical shaped NPs (worm, 

filamentous, or disk-like) could be used effectively in drug transport. 

The surface structures of NPs are crucial properties in defining the behavior of NPs. One reason NPs are 

reactive is their small size and large surface area. This property of NPs and their coatings cause stronger 

interactions with biological tissues. Therefore, its transfer occurs easily to higher trophic levels [16,17]. 

Different coating such as carboxylic asides, polymers, polysaccharides, surfactants, organic and inorganic 

coating can modify surface properties of NPs. The surface charge of NPs helps the adhesion of NPs on cell 
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surfaces and significantly impacts its toxicity factor [18]. 

3. The effects of NPs on trophic tevel 

Carrying in trophic levels and toxicity of NPs can relate to two groups: non-soluble and water-soluble NPs 

[6,7]. While the water-soluble NPs can accumulate in the aquatic ecosystem, non-soluble NPs can aggregate 

and take with food particles in the water column or benthic zone. When NPs discharge into the aquatic 

ecosystem, they undergo a transformation. Depending on the chemical properties of the water, transformations 

involving different physical, chemical and biological pathways such as agglomeration, absorption and 

dissolution occur. They cause toxic effects on organisms according to their NPs properties. The exposure time 

(short term or long term) of the organisms is as important as the NPs concentration [2,10-12,14].  

The impacts of NPs on organisms in freshwater ecosystems, especially in standing water habitats such as lake 

and pool in the river needs to be examined, because of water circulation can observe seasonally due to the 

absence of water flow. NPs that can agglomerate with organic and inorganic materials accumulate towards the 

bottom. Even if the lake is in the circulation period, NPs cannot be transported from the habitat as in rivers. 

The small particle size and water-soluble NPs remain suspended in the water body. As a result, 

bioaccumulation occurs through the food web (Figure 1). 

 
Figure 1. The adverse effects of NPs on aquatic community structure and bioaccumulation are summarized. 

Adapted from [3,12]. 

 

Algae, Crustacea, Bivalvia, the rainbow trout (Oncorhynchus mykiss), the zebrafish (Danio rerio) are common 

models for studying the toxicity of NPs. The transformation of NPs with different characteristic in the 

freshwater habitats influences toxicity on algae. For instance, magnetic nanoscale zerovalent iron (NZVI) was 

observed to inhibit the growth of Chlorella vulgaris [19]. For the first time, Zhang et al reported the effect of 

surface charge of Ag NPs on their accumulation dynamics in Chlorella vulgaris. Polyethylene-coated Ag NPs 

(PEI-AgNPs) and citrate-coated Ag NPs (Cit-AgNPs) were selected as positively and negatively charged Ag 
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NPs (P-AgNPs and N-AgNPs, respectively). Their uptake and elimination dynamics were exanimated at EC50 

and EC10 inhibition of growth rate values [20]. TiO2 NPs is one of the metal oxide nanoparticles, which have 

been used in personal care products (cosmetics, sunscreen and toothpaste, etc). Mostly anatase and rutile 

shapes of these NPs which are highly photoreactive forms are used. The photocatalytic potential and toxicity 

of NPs on Chlorella sp. were studied upon UVA pre-irradiation and UVB pre-irradiation by Roy et al [21]. 

The authors showed that UVB pre-irradiation of P25 TiO2 NPs caused more toxicity on freshwater algae 

because of the effect on oxidative stress (SOD, CAT, and APX activities). TiO and ZnO are widely used metal 

oxide NPs. Therefore, researches for these two NPs toxicological effects have focused on the model organism 

Daphnia. In long and short term assays, toxicological impacts of ZnO NPs and TiO2 NPs were studied in 

detail on reproduction dynamics and population structure of D. magna [11]. In the short time (96h) assays, 

LC50 values were determined 1.8 mg L
−1

 TiO2 NPs, 0.7 mg L
−1 

ZnO NPs, and 0.1 mg L
−1 

cocktail treatment. In 

the long time (21d) assays, LC50 value was calculated 1.0 mg L
−1

 TiO2 NPs, immobilisation and death were 

recorded. The body morphology and population dynamics were affected negatively depend on increasing 

concentrations [11]. 

Banerjee and Roychoudhury [14] stated that a different situation seen in the bio-transfer and bio-accumulation 

of nanoparticles in the food chain have occurred in biofilm plates. Grazers and detritivores organisms such as 

snails are fed with biofilm contaminated with TiO2 NPs and transfer NPs to the upper trophic levels. In some 

cases, NPs are generally non-toxic to some microorganisms as they are trapped in the extrapolymeric structure 

of biofilms. However, leaf-dwelling epiphytic microorganisms are typically sensitive to CuO NPs and Ag NPs 

[14,22]. 

Monikh et al. studied that combinations of different physical characteristics as size, shape and the natural 

organic matter (NOM)-ecocorona of Au NPs impact the attachment of the particles to algae [23]. Spherical 

(10, 60 and 100 nm), urchin-shaped (60 nm), rod-shaped (10 × 45, 40 × 60 and 50 × 100 nm), and wire-shaped 

(75 × 500, 75 × 3000 and 75 × 6000 nm) citrate-coated and NOM-coated Au NPs were applied in the study. 

The authors demonstrated that the effects of the different morphologic structure of NPs on Pseudokirchinella 

subcapitata. Among NPs with different sizes and shapes, spherical 10 nm Au NPs caused membrane 

detriment to algae. Au NPs with rod-shaped (10 × 45 nm) caused cell membrane detriment. Wire-shaped Au 

NPs caused no membrane detriment to the P. subcapitata [23]. A kind of alter AgNPs makes in the defensive 

behavior of Daphnia magna maternal and subsequent generation has been studied by Hartman et al [24]. 

Adult D. magna has the ability to typical anti-predator defense mechanisms when applied to kairomones and 

AgNPs (14.9 ± 2.4 nm and concentration range, 2.5 µg/L – 20 µg/L). On the other hand, their offspring could 

not show such defensive characteristics. The lack of this adaptive defense mechanism will have a negative 

effect on D. magna population dynamics and hence potentially on the whole food web in the freshwater 

ecosystem. 

Gökçe et al. demonstrated that the effects of MNPs with different particle sizes on Daphnia population were 

tested by short term bioassay [2]. According to mortality and morphological measurements, CuFe2O4 MNPs 

were found to be more toxic than the other two MNPs. The concentrations of CuFe2O4, Co Fe2O4, and Ni 

Fe2O4 MNPs drastically affected life span and morphologic growth of D. magna as a result of a short time (96 

h) exposure. 

Although biosynthesized nanoparticles are identified as green products, the surveys on their toxicity to aquatic 

food chains are insufficient [18]. Biosynthesized Ag NPs were produced by the reaction of Ag ions with leaf 

extract of plant Alcea rosea (AR-Ag NPs). The toxic effects of AR-Ag NPs and their pioneers such as Ag ions 

and coating agent (A. rosea leaf extract) on Chlorella vulgaris, Daphnia magna and Danio rerio, organisms of 

different trophic levels of a freshwater food web were examined. D. magna was found the most sensitive 

organism to AR-Ag NPs exposure according to results [18]. 

The bioaccumulation and biomagnification of nanoparticles can change the reproductive potential, swimming 

behavior and growth rate in some of the aquatic organisms such as Daphnia and zebrafish (Danio rerio). NPs 

accumulation on the algal surface could obstruct the uptake of nutrients by algae. Also, nanomaterials can 
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play a role as mimic for nutrients by their strong adsorption. While exposure to NPs causes a reduction in 

body morphology (such as length and width) as the concentration increased, and alter defense behavior in 

Crustacean population, cause variations of survival, hatching periods and larval morphology, malformations in 

the fish larvae. 

The morphology, physicochemical characteristics and concentration of nanoparticles determine risks on 

aquatic organisms. Continuity of biochemical pathways and cell structure depend on the kinds of 

nanoparticles. The previous studies in the literature, the population structure including individual variations 

shown negatively affect by these NPs amounts. When the community structure of organisms in different 

trophic steps is adversely affected, it is seen that the aquatic ecosystem balance is disturbed. Monitoring the 

behavior of these pollutants entering the aquatic ecosystem from point / non-point sources with the population 

structure of biomonitor organisms plays a key role. 

4. Conclusion 

Nanoparticle materials are used more and more every day due to their industrial advantages. There are 

potential risks with the discharge of nanoparticles into the freshwater ecosystems. NPs can alter the population 

dynamics and community structure at the species level that are more sensitive or tolerant to environmental 

pollution. Moreover, there is limited information regarding nanoparticles’ impact on the biota and ecosystem 

balance/ dynamics.By consuming organisms contaminated with NPs, NPs in the food web are transferred to 

higher-level organisms. Nanoparticles aggregated in the respiration and digestive system (gill and gut) in 

considerable concentrations have possible toxic effects. Biomonitor organisms are very sensitive to changes in 

water quality, hence, reflect ecosystem contamination degrees. It is recommended that the aquatic ecosystem 

should be monitored long term with the determined organism. Environmental risk assessments approach with 

three factors that define the resource of the problem: selecting population level endpoints, identifying the 

ecosystem, and defining the threat or pollution. In this context, more specified and comprehensive 

environmental risk assessment methods should be implemented for each level of the aquatic ecosystem before 

wastewater discharge and applying NPs for lake restoration. Consequently, alteration in population dynamics 

and community structures upon exposure to NPs are crucial in terms of possible indication changes in the 

ecosystem. NPs use should be limited based on human health and ecosystem balance; and waste water 

treatment should be performed according to standards.  
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