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Abstract 

Quite commonly, faculty performance evaluations use a weighted scheme. 

Individual faculty members are evaluated on a scale with respect to teaching, 

research, and service activities. These scores are then combined using pre-

determined weights to obtain a combined score that is often used to compare 

different members. The presented study aimed to investigate the effects of 

selecting the weights on the individual scores and rankings. The interest is not on 

single faculty members, but rather on the systems aspects of the practice. That is, 

how do the weights affect the educational system as a whole? How sensitive is 

the evaluation system to the selection of the weights? In order to question the 

leverage, a decision-maker who determines the weights would have on the 

outcome of the rankings, the approach based on numerical examples and formal 

linear programming (LP) considerations is used. 

 Keywords: Faculty evaluation, Numerical evaluation schemes, Weights 

1. Introduction 

Quantitative faculty evaluations assign a performance score to each member. The widespread practice is to 

consider a set of criteria, to assign raw scores to the professors regarding each of the criteria, and then 

combine these raw scores into a weighted sum to obtain a single aggregate score. These scores are used by 

administration to various ends. 

Faculty member evaluation is a challenging process due to the general nature of academic institutions. The 

literature on faculty evaluations is extensive and broad. There are many studies that discuss the need, 

appropriateness, fairness, and utility of this practice [11], [13], [17]. The evaluation results generally serve 

two main proposes: to improve faculty performance by assessing the strengths and weaknesses of the 

professors (formative purpose), and to help administrators to make personnel decisions like promotions or 

salary adjustments (summative purpose). The weight defined for each criterion reflects the strategic 

preferences of the institution. For example, teaching-oriented institutions may assign a larger weight to 

teaching than would research-oriented institutions. A general criticism is the quantification of what is 

essentially qualitative in nature [8], [12], [18]. Redmon [11] questions the conflicting objectives of this 

process: judging and assisting. Younes [3] also focuses on the issue of “competing values” and discusses the 

differences between the administrative perception and the faculty perception of the process. Gunn [2] claimed 

most evaluation systems are spurious and lead to rivalry among academics. So, there is a rising concern over 

effectiveness and credibility of evaluation systems from many different aspects. 

The objectivity of an evaluation system may be determined by its consistency of conclusions based on the 

same data [16]. Beyond reliability and objectivity, several other questions emerge. For instance, would a 
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 SEI Vol. 2, No. 2, December 2020, pp.89-101 

 

90 

practice that uses the same set of weights for each faculty member promote duplications and reduce diversity? 

We note that there are some evaluation systems where customized weights are assigned at the beginning of 

each year specifically for each department or professor, according to the strategic directions and the 

expectations of the institution during that period [15]. 

There are formal models proposed for faculty performance evaluation which include the so-called Analytic 

Hierarchy Process approach [6], [9], [14] and Multi-Criteria Decision-Making techniques [1], [4], [7]. In 

particular, [4] propose a comprehensive model to design performance evaluation systems. In that study, the 

assignment of weights and their bounds are sought using formal arguments. However, as far as we know, the 

present work is the first to study the effects of weight assignments and the sensitivity of the evaluation system 

to these assignments in a formal setting. 

Quite often, faculty responsibilities are a combination of three main duties: teaching, research, and service, 

each with its corresponding weight. Let these weights be represented by 3-tuples, such as (0.50, 0.30, 0.20), 

corresponding to a weight of 50% for teaching, 30% for research, and a weight of 20% for service. A web 

survey of many U.S. universities indicates that typical weights are relatively round numbers, such as (50%, 

25%, 25%) or (40%, 40%, 20%), etc. Acknowledging the expediency of this practice, it is, nonetheless, open 

to criticism. Most view these three activities as being neither independent nor mutually exclusive [5], [19]. 

The fact that most weights are round numbers gives the impression that these weights are assigned based on 

rather ad hoc approximations or through deliberations, e.g. Delphi methods, rather than careful quantitative 

scrutiny of their effects. 

Irrespectively, it is clear that aggregate scores have a significant impact on the institution, be it merit pay, 

strategic alignment, or personnel moral. This observation that weights seem to be assigned in a intuitive 

manner gives justification to our extensive formal quantitative work. We focus on the process of assigning 

weights to criteria. How significantly does the assignment of weights affect the resultant evaluation? How 

does the institution justify the assignment of weights? Or, how can one rigorously identify the causality 

relationship between weight assignments and the alignment of faculty efforts with the institutional objectives? 

Although the discussion here is presented in the context of academic evaluations, it is equally applicable to 

other domains where numerical scores are given to a set of criteria. Examples may be found among rankings 

of airlines, sports clubs and their players, movies, and consumer products. 

2. Scope, purpose, and contribution 

Notwithstanding the extensive literature on quantitative faculty evaluations, our work focuses on a rather 

unique aspect of the practice. We would like to investigate the effects of selecting the weights on the 

individual scores and rankings. Our approach is based on a formalism given in the following section. We then 

make use of Linear Programming (LP) optimization techniques. The versatility of our approach is 

demonstrated by several extensions. Our interest is not on single faculty members, but rather on the systems 

aspects of the practice. That is, how do the weights affect the set of professors, their relative rankings, and 

their prospects to be the best or words performer, and how sensitive is the evaluation system to the selection 

of the weights? We also ask how much leverage administration has by manipulating the assignment of the 

weights. If the rankings are sensitive to the selection of the weights, then administration wields great power 

and influence over the outcomes. This is especially important if these rankings are used for personnel 

decisions such as promotions or firings. We would like to identify the circumstances under which the 

administration has greater influence over the rankings. 

 

It should be noted that scores need not be higher-the-better type. All arguments are equally applicable to the 

lower-the-better type as well. A simple way to implement this is to consider the scores as penalties. Than any 

numerical mechanism that identifies the best is equally applicable to identifying the worst. In plain terms, 
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quantitative evaluation schemes that are used for promotion are symmetrically and equally applicable to 

schemes employed for firing. 

2.1. The formalism  

In this work, the approach used to investigate the effects of weight assignments is based on formal (numerical 

or quantitative) modeling considerations. The formalism is presented in terms of professors and rankings of 

three criteria: teaching, research, and service. Of course, the formalism may be applied to other domains, such 

as product rankings based on customer reviews, and may include fewer, or more likely, more criteria. 

Table 1. Nomenclature 

Parameters   

𝑁  Number of professors  

𝑀  Number of criteria (here we use 𝑀 = 3 i.e., teaching, research, service) 

𝐵  Big M, a sufficiently large number  

Sets   

𝑃 = {𝑃𝑖}  Professors 𝑖 ∈ {1,2, … , 𝑁} 

𝐶 = {𝐶𝑗}  Criteria 𝑗 ∈ {1,2, … , 𝑀} 

Variables   

𝑠𝑖𝑗  Score of professor i criteria j ∀𝑖, ∀𝑗 

𝑣𝑖  Vector of scores 𝑠𝑖𝑗 of professor i ∀𝑖 

𝑆𝑖  Aggregate score of professor i ∀𝑖 

𝑋𝑖  
Binary variable: 1 if Professor i has the highest 

aggregate score, 0 otherwise 
∀𝑖 

𝑌𝑖  
Binary variable: 1 if Professor i has the lowest 

aggregate score, 0 otherwise 
∀𝑖 

𝐼𝑛  Index of professor who is n-th best in ranking for  𝑛 = 1,2, … , 𝑁 

Performance indicators   

𝐿  The lowest aggregate score of all professors  

𝐻  The highest aggregate score of all professors  

𝛿1  
Fraction (density) of professors who could achieve the top aggregate score by 

manipulating the weights 

𝛿𝑘  
Fraction (density) of professors who could achieve the top k aggregate scores 

by manipulating the weightsa 

Decision variables   

𝑤𝑖  Weight assigned to criteria j ∀𝑗 
aSee Section 6 for a detailed description. 

Given the raw scores of professors for each of the criteria, we are interested in the relative ranking of the 

aggregate scores 𝑺𝒊 of the set of professors based on the different assignment of weights. That is, how are the 

aggregate scores 𝑺𝒊 affected by the selection of the weights? Is it possible to manipulate the weights so that, 

say, a given professor has the highest score? Moreover, with 𝑵 professors, there are 𝑵! possible rankings, or 

orderings. Is it possible to achieve a given ordering by carefully choosing the weights appropriately? 

Regarding these inquiries, let us define a system parameter, 𝜹𝟏.We name this parameter 𝜹𝟏 since it is a type of 

density. Specifically, 𝜹𝟏 is the fraction of the professors that could be placed as the highest aggregate scoring 

professor. The smallest possible value of 𝜹𝟏 is 𝟏/𝑵. This corresponds to the case that one professor dominates 

all others in every criterion. The largest possible value of 𝜹𝟏 is 1. This corresponds to the case where any of 

the 𝑵 professors may be set to have the highest aggregates score. Clearly, the density 𝜹𝟏 is determined by the 
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set of individual raw scores of the professors in each of the criteria, the 𝒔𝒊𝒋's. As such we view the densities as 

the properties of the system, i.e., of the totality of the scores, rather than the performance of any one of the 

professors. Equivalently, the density may be interpreted as a probability. It is the probability that a randomly 

chosen professor has the potential to achieve the highest aggregate score. 

3. Numerical experiments 

In order to gain deeper insights into the properties of the evaluation system and the presented formalism, we 

perform several numerical experiments. For a given set of individual scores (𝑠𝑖𝑗), we compute the aggregate 

scores for all professors 𝑘 = 1,2, … , 𝑁. We then find the professor with the highest aggregate score. We span 

the solution space by inspecting all possible combinations of the weights. We count how many of the 

professors may attain the best score by manipulating the weights in their favor.  

3.1. The effect of weights on the determination of the best professor 

Let us consider an example with scores as given in the table below (Table 2). We have 𝑁 = 5 professors who 

are evaluated by 𝑀 = 3 criteria. Each professor has a raw score between 0 and 1 for each criterion. 

Table 2. An example: the scores 𝑠𝑖𝑗 are given for the case 𝑀 = 3 and 𝑁 = 5 

Criteria 
Professor 1 Professor 2 Professor 3 Professor 4 Professor 5  

1 0.65 0.65 0.07 0.65 0.05 

2 0.15 0.65 0.80 0.75 0.83 

3 0.60 0.25 0.60 0.07 0.57 

Given the data, we may pick a set of weights and see which professor attains the highest aggregate score. The 

set of possible weights constitutes our solution space. The solution space is spanned by 𝑤1, 𝑤2, and 𝑤3. Since 

𝑤3 = 1 − 𝑤1 − 𝑤2 we may show the entire solution space as a two-dimensional area on the (𝑤1, 𝑤2) space. 

Moreover, since 𝑤1 + 𝑤2 may not exceed 1, the solution space is a triangular region in the first quadrant of 

the (𝑤1, 𝑤2) space. Different points in this space correspond to different weights. Such a space is shown in 

Fig. 1 below. We paint each point according to which of the five professors attains the highest score. 

 
Figure 1. Regions where each professor attains the highest score. 

The solution space has five distinct regions, each corresponding to a different professor. Clearly, it is not 

necessary that every professor attains the highest aggregate score. That is, there may be cases where the 
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number of regions is strictly less than the number of professors. In the extreme case, suppose one of the 

professors receives nonnegative scores in each of the criteria, while the remaining 𝑁 − 1 professors all receive 

zero scores. Then, the entire solution space would be dominated by that one professor with nonzero scores. 

Fig. 1 provides further insights into the effects of choosing the weights. Interestingly, there is a point, close to 

(0.3, 0.5) where four separate regions meet. This point corresponds to (approximately) 𝑤1 = 0.3, 𝑤2 = 0.5, 

and 𝑤3 = 0.2. All but Professor 1 become the highest scoring person in the vicinity of this point. In another 

sense, the selection of the “best” professor is highly sensitive to the selection of the weights. By a small 

change, we may allow any one of the four professors to be the best. As mentioned, the same argument holds 

for the "worst" professor. If evaluations were used for firing the worst performer, by slightly perturbing the 

weights, we may select any one of the professors to be fired. 

We would like to ascertain if a given professor could attain the highest aggregate score without the need to 

scan the entire solution space. In the next section, we present a formal model that would address this question. 

4. A linear programming (lp) formulation 

The computation of the weights that leads to prescribed circumstances is easily accomplished by a simple 

linear programming (LP) implementation. Actually, the problem at hand has sufficient properties that may 

lend itself to closed-form solutions. However, for the sake of generality, as an initial attempt, we are lured by 

the expediency of the LP approach. 

Let us consider the case where Professor k is to have the highest aggregate score. We consider the following 

formulation. 

𝑚𝑎𝑥 𝑆𝑘  (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:    

𝑆𝑖 = ∑ 𝑤𝑗

𝑀

𝑗=1

𝑠𝑖𝑗 ∀𝑖 (2) 

𝑆𝑘 ≥ 𝑆𝑖 ∀𝑖 (3) 

∑ 𝑤𝑗

𝑀

𝑗=1

= 1  (4) 

𝑤𝑗 ≥ 0 ∀𝑗 (5) 

Equation (2) defines aggregate scores as linear combinations of the individual scores, while inequality (3) 

forces 𝑆𝑘 to be the maximum of all scores. Equation (4) is the normalizing condition, while inequality (5) 

forces the weights to be nonnegative. This model, if a feasible solution exists, gives the set of weights 

{𝑤1, 𝑤2, … , 𝑤𝑀} that maximizes the aggregate score of Professor k (that is, 𝑆𝑘).  

Whether or not a given professor may receive the highest aggregate score may be discovered by solving the 

LP described above. A feasible solution would indicate that it is possible for the given professor to attain the 

highest aggregate score. While the LP will yield only a single feasible point in the weight space, more work is 

needed to plot the entire region where that professor receives the highest aggregate score. Theoretical 

considerations in LP prescribe the so-called sensitivity analysis as a means to discover the entire region 

throughout which the solution remains optimal. The LP view of the phenomena and the accompanying 



 SEI Vol. 2, No. 2, December 2020, pp.89-101 

 

94 

formulation provide additional benefits. For example, LP guarantees that if a feasible region exists, it is 

contained in a contiguous linear convex region, referred to as a simplex. Thus, we know that the picture we 

have from a single example above (see Fig.  1) is not an exception, but a typical case. In three dimensions 

(three decision variables) the regions will be convex areas bounded by lines. Although an important and 

worthy endeavor, we will not pursue sensitivity analysis in this paper, but rather dwell on the insights from the 

formulation and the meaning of evaluation. 

5. Performance indicator densities 

In previous sections we defined a key performance indicator. The density 𝛿1 is the fraction of professors who 

could receive the top score by suitably selecting the weights. The density 𝛿1 clearly takes values in interval 

[1/𝑁, 1]. We experiment with randomly generated cases to gain further insights into this performance 

indicator. Numerical experiments were based on generating random data and analyzing the results of the LP 

solutions. Sets of normally distributed scores (𝑠𝑖𝑗) were generated. Each set contained 250 replications. The 

density 𝛿1 was computed for different numbers of professors (𝑁 = 5, 10, 15, 20, 25, 30, 35, 40) and three 

criteria (𝑀 = 3). Fig. 2 below shows the distribution of the density 𝛿1. 

As seen, when there is a large number of professors, there are fewer cases where a given professor may attain 

the best score. For 𝑁 > 30, 𝛿1 is about 20%. However, when the number of professors is small, for 𝑁 = 5, 

then the density is much higher (𝛿1 is about 60%). Fig. 2 gives box plots for the density 𝛿1. Not only the 

median is shown as a bar, but also the quartiles are indicated [10]. It may be argued that if the number of 

professors is large, there are always a few "star" professors who excel at many criteria, and thus dominate 

most other professors in ranking. This property seems plausible. Consider the case where there are much more 

criteria than professors. It stands to reason then that it would be easier to pick different criteria that make a 

given professor receive the highest aggregate score. 

 

Figure 2. The effect of the number of professors on the density 𝛿1 (M= 3, 250 replications of each experiment) 
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It is not unreasonable that not all professors may reach the top rank. After all, there will be cases where 𝑣𝑘 ≥

𝑣𝑙, that is when all of the scores of professor k are at least as large as that of professor l, that is, when 𝑠𝑘𝑗 ≥

𝑠𝑙𝑗. Then, irrespective of the weights, professor 𝑃𝑘 will have a higher aggregate score compared to professor 

𝑃𝑙. In the language of mathematical programming, we say that 𝑃𝑙 is dominated (by 𝑃𝑘). The fewer the criteria, 

the higher the chance of dominated elements. After all, if we had only one criterion, then only one professor 

could achieve the top rank, and all others would be dominated. Similarly, a large pool of professors would be 

expected to contain many dominated ones.  

Here, we would like to point out that our assumption that scores (𝑠𝑖𝑗) are normally distributed is only an 

introductory consideration. Not having any prior insights, we simply assume a normal and statistically 

independent distribution for each raw score. It is entirely plausible that over time, a given evaluation process 

would lead the professors to adjust their efforts in preferable directions. In all likelihood, there would be 

professors who naturally gravitate towards one or more of the criteria with higher weights. These 

considerations will be revisited later. For the time being, our objective is to gain preliminary insights into the 

systems aspects of such quantitative weighted evaluation practices. Preliminary work shows that the insights 

listed above are relatively independent of the exact distribution of the raw scores as long as the scores are 

statistically independent. This claim seems plausible, since we are interested in orderings and not the exact 

amount of differences between scores. 

We next investigate the effect of the number of criteria on the distribution of the density 𝛿1. A similar set of 

random data is generated following the normal distribution assumptions. This time, number of criteria (M) is 

changed while the number of professors (N) is fixed at 20. As the number of criteria and the number of 

corresponding weights (decision variables) increase, system becomes more malleable. As expected, the 

possibility of any professor achieving the best score grows rapidly. Fig. 3 summarizes the numerical 

experiment results. With eight different criteria (M = 8), it seems about 80% of the professors may achieve the 

highest score by so manipulating the weights. 

 

Figure 3. The effect of the number of criteria on the density 𝛿1 (N=20, 250 replications of each experiment) 
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It is somewhat surprising, however, that the density 𝛿1 exceeds 80% with only eight criteria. That is, with 

eight criteria, it is possible to practically place any professor from a group of 20 as the top performer. This 

gives the decision maker who assigns the weigh a considerable amount of power over the rankings. Once 

again, we note that the analysis works symmetrically for ranking the worst performers. As such, the insights 

are equally valid when we consider firing decisions versus hiring or promotion decisions. 

6. The effect of weights on the order of aggregate scores 

The formal model given by equations (2) - (5) seeks to bring only one professor to the top rank. We may also 

be interested to see if a given ordering of the professors is possible. That is, not only do we want a certain 

professor to have the highest score, but we also want to place certain professors in second place, third place, 

etc. This requires a few changes in the initial LP. In the most general case, we would like to see if the top k 

rankings could be assigned to k specific professors. We define the density 𝛿𝑘 as the fraction of (N
k

) orderings 

of the best k professors that can be achieved by manipulating the weights. 

Let us call the set of all k rankings 𝛺𝑘, with elements < 𝐼1, 𝐼2, … , 𝐼𝑘 > where 𝐼𝑛 is the index of the professor 

whose score is to be the n-th best among all professors. The set 𝛺𝑘 has (N
k

) elements. The set 𝛺𝑁 has 

cardinality 𝑁!. We use a second subscript to differentiate among the(N
k

) orderings, that is, we let 𝛺𝑘,𝑙 denote 

the l-th such ordering, where 𝑙 = 1,2, … , (N
k

). 

We no longer want a specific professor to have the highest score, so we remove inequality (3) and replace it 

with the following set of inequalities. 

𝑆𝐼𝑛
≥ 𝑆𝐼𝑛+1

 for 𝑛 = 1,2, … , 𝑘 − 1 (6) 

Since we are only interested in whether or not such a set of weights exists that yields this particular ordering, 

the objective function is inconsequential. Some software packages nonetheless require a dummy objective 

function, such as the one below. 

𝑚𝑎𝑥  1  (7) 

An alternative objective may be to maximize the score of the top-ranking professor. 

𝑚𝑎𝑥  𝑆𝐼1
  (8) 

With these changes, we may use the LP formulation to see if the weights may be manipulated to 

achieve the given ordering of the professors. A feasible solution means that there exists weight that would 

yield the desired ordering. As another numerical experiment to gain insights, let us use the following raw 

scores and compute 𝛿𝑁, that is 𝛿5, 

Table 3. An example: the scores 𝑠𝑖𝑗 are given for the case 𝑀 = 3 and 𝑁 = 5 

Criteria 
Professor 1 Professor 2 Professor 3 Professor 4 Professor 5  

1 
0.63 0.61 0.55 0.47 0.31 

2 
0.60 0.38 0.03 0.90 0.68 

3 
0.10 0.23 0.52 0.31 0.81 
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The five professors may be ordered in a total of 5! = 120 different ways. Again, we do not expect all such 

orderings to be feasible. The experiment yields 26 regions as depicted in Fig. 4 where each color represents 

different ordering. In this example, a little over 20%, (i.e., 𝛿5 =
26

120
 ) of the orderings turn out to be feasible. 

Note that here 𝛿1 = 1 since any of the professors may achieve the top score.  

 

Once again, as seen in Fig.  4, we observe a point near (0.6, 0.1) where many regions meet. The ordering of 

the professors becomes exceedingly sensitive to the selections of the weights near this point, (i.e., near 𝑤1 =

0.6, 𝑤2 = 0.1, 𝑤3 = 0.3). A close examination reveals that there are actually several small regions clustered 

around this point, besides the several wedge-shaped regions.  

 

The rank orderings are important even if the best performers remain unchanged. Many institutions have 

uncontested super-performers, who routinely receive rewards. Then the competition is focused on the second 

tier of faculty to jostle for position among this group. While not super-performers, they nonetheless compete 

for rewards such as raises, sabbatical leaves, equipment and supplies, graduate students, etc. 

 
Figure 4. Feasible regions for different rankings (Data from Table 3) 

In the example discussed, we see that 𝛿𝑁 is a little over 20%. The two density measures 𝛿𝑁 and 𝛿1 are related. 

If 𝛿𝑁 is high, one would expect 𝛿1 to also be high, since the more likely to achieve any given ordering implies 

that it would be easier to place any given professor to be the best. 

7. The effect of weights on the range of aggregate scores 

The range of aggregate scores is a good indicator of the spread of the performance of the professors. We next 

ask how much may the range of scores be affected by the choice of the weights. That is, do the selection of the 
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weights have a significant impact on the difference between the best and worst aggregate scores? 

Once again, we take advantage of the versatility of the LP formulation. We make use of binary variables 𝑋𝑖 

and 𝑌𝑖 which are defined for each professor 𝑖. 𝑋𝑖 is set to 1 if Professor 𝑖 has the highest aggregate score, and 0 

otherwise. Similarly, 𝑌𝑖 is set to 1 if Professor 𝑖 has the lowest aggregates score, and 0 otherwise. The decision 

variables 𝑋𝑖 and 𝑌𝑖 may be regarded as indicators. 

The constraints to tease out the highest and lowest scores are given below. The formulation extends the basic 

formulation given Section 2.1, Equations (2, 4, 5) are directly taken from the basic formulation. 

𝑚𝑖𝑛/𝑚𝑎𝑥 𝐻 − 𝐿  (9) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:    

𝑆𝑖 = ∑ 𝑤𝑗

𝑀

𝑗=1

𝑠𝑖𝑗 ∀𝑖 (10) 

𝐻 ≥ 𝑆𝑖 ∀𝑖 (11) 

𝐿 ≤ 𝑆𝑖 ∀𝑖 (12) 

𝐻 − 𝐵(1 − 𝑋𝑖) ≤ 𝑆𝑖 ∀𝑖 (13) 

𝐿 + 𝐵(1 − 𝑌𝑖) ≥ 𝑆𝑖 ∀𝑖 (14) 

∑ 𝑋𝑖

𝑁

𝑖=1

= 1  (15) 

∑ 𝑌𝑖

𝑁

𝑖=1

= 1  (16) 

∑ 𝑤𝑗

𝑀

𝑗=1

= 1  (17) 

𝑤𝑗 ≥ 0 ∀𝑗 (18) 

The highest score 𝐻 must be greater than or equal to all aggregate scores. Equation (11) states this condition. 

Similarly, the lowest score 𝐿 must be less than or equal to all aggregate scores, as required by equation (12). 

Equation (13) forces the variable 𝐻 to be one of the aggregate scores. Here we make use of the so-called Big 

M method. The parameter 𝐵 is a sufficiently large number. If Professor 𝑖 does not have the highest score, then 

the corresponding binary variable 𝑋𝑖 will be zero, and hence, inequality (13) will be satisfied regardless. Here 

the parameter 𝐵 need only be larger than 1. If Professor 𝑖 does have the highest score, then inequality (13) 

together with inequality (11) will force 𝐻 to be the score 𝑆𝑖. A similar formulation is used for the lowest score. 

Inequality (14) along with inequality (12) set 𝐿 to the lowest aggregate score with the help of the binary 

decision variables 𝑌𝑖. Finally, equation (15) allows only one of the binary variables 𝑋𝑖 to be 1 and all others 

zero. Similarly, equation (16) allows only one of the binary variables 𝑌𝑖 to be 1 and all others zero. That is, we 

pick only one aggregate score to be the highest and only one to be the lowest. 

The additional constrains given above allow us to seek the weights that yield the widest and narrowest range 

of aggregate scores. We use the objective functions to find the widest and narrowest ranges. Once again, we 
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use the example given by Table 2 to discover that 𝑤1 = 0.34, 𝑤2 = 0.31, and 𝑤3 = 0.35 gives a range of only 

0.03. The lowest aggregate score in this case is 𝑆1 = 0.48 and the highest aggregate score is 𝑆2 = 0.51. The 

range is practically nonexistent and all professors have almost the same aggregate score. On the other 

extreme, the weights 𝑤1 = 0, 𝑤2 = 1, and 𝑤3 = 0 give the largest possible range of 0.68, where 𝑆5 = 0.83 and 

𝑆1 = 0.15. Granted, the extreme case of one of the weights equal to 1 and the others zero is rather unrealistic. 

However, it is nonetheless rather surprising that the range of aggregate scores could be affected so much by 

the choice of the weights. 

A nefarious administrator may be interested not in the order of the entire set of professors, but only in 

elevating one specific professor from another. Although such intent is to be condemned, we nonetheless 

would like to know if potential for such activity exists. The versatility of the LP formulation is once again 

acknowledged. We single out two professors and want to make one have an aggregate score above the other as 

much as possible. The following objective function maximizes the difference among the aggregate scores of 

professors 𝑃𝑘 and 𝑃𝑙. Of course, scenarios involving more professors are also implemented quite easily by the 

LP formulation, once again illustrating the versatility and universality of the formulation. We introduce the 

inequality, 

𝑆𝑘 > 𝑆𝑙  (19) 

and set the objective function to force the difference to be as large as possible. 

max 𝑆𝑘 − 𝑆𝑙  (20) 

If a feasible solution exists, the difference of the aggregate scores of the two professors will be as wide as 

possible. 

8. Conclusion 

It is quite common that competing entities (professors, products, airlines, etc.) are evaluated based on an 

aggregate score computed as a weighted sum of individual scores in each of the criteria. We present our work 

in the context of professors, along with the common criteria of teaching, research, and service. We question 

the leverage a decision maker who determines the weights would have on the outcome of the rankings. Our 

approach is based on numerical examples and formal linear programming (LP) considerations. 

We find that the nature of the phenomenon of such evaluation is indeed sensitive to the selection of weights. 

We show that in many cases, small perturbations to the weights may result in many different rankings of the 

faculty. Albeit being perceived as embodying numerical precision, the practice may lead to unintentional and 

rather unsubstantiated erroneous conclusions. Moreover, the practice may be vulnerable to intentional 

manipulation by those who set the weights.  

Acknowledging the findings presented here would lead to more fair practices. As such, this work suggests 

several additions to the common practices. The process may benefit from the reporting of anonymized 

professor raw scores and the solution space. Cases where small perturbations have large effects may be 

discounted. If such cases persist, the institution may wish to alter its evaluation strategy from a strict 

numerical ranking towards a more constraints-based strategy. That is, the institution may choose to set 

minimum achievement levels, and regard any professor who meets or exceeds these thresholds to be 

satisfactory. 

This work encourages further investigations at a wider scope. The systems view of the weights and the 

grading practice encapsulates information regarding the distribution of talent and capabilities among the 

faculty members. Issues such as how similar or dissimilar the faculty members are relating back to the level of 
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diversity versus uniformity of the set. Along the same lines, data from successive years contain information 

regarding whether the population characteristics converge or diverge. Divergence in this sense expands the 

collective range and domain of the talent, skill, and expertise of the institution. Convergence implies 

conformity and regression towards a singularity, towards a setting where all members are rather similar in 

their skills and talents. Which of these trends is preferable and encouraged depends on the institution and the 

specific nature of the evaluation? If done intentionally and calculatingly, these are the tools to guide the body 

of faculty. However, there is also a chance to adopt evaluation policies that seemingly implement the 

traditionally popular mechanisms, but result in rather unintentional consequences. Knowing the expected 

effects of the evaluation mechanism is thus in the interest of the institution. This study provides a way to 

measure diversity as the possible range of scores, as given in Section 7. That is, rather than measuring the 

range of achieved scores, the institution may benefit from comparing the range of the widest and narrowest 

possible range. 

The work also points to promising future directions. A mathematical study to further scrutinize the properties 

of densities 𝛿𝑘 would be beneficial, especially if it yields closed-form solutions. And finally, the versatility of 

the LP approach developed in this study may lead to the investigation of related performance measures. In this 

sense, the study is regarded as having presented a potential general methodology for future investigations. 

Finally, the concerns addressed here are applicable to other domains of evaluations and rankings, such as the 

rankings of airlines, sports clubs, movies, and consumer products. Any extensions of the results here to these 

fields are encouraged.  
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